Brief introduction of 288-36-8

The chemical industry reduces the impact on the environment during synthesis 288-36-8. I believe this compound will play a more active role in future production and life.

The chemical industry reduces the impact on the environment during synthesis 288-36-8, name is 1H-1,2,3-Triazole, I believe this compound will play a more active role in future production and life. 288-36-8

General procedure: To a 20 ml or 40 ml viale quipped with a stir bar was added photocatalyst, nitrogen nucleophile, iodomesitylene dicarboxylate, copper salt, and ligand. Dioxane was added followed by addition of the base. The solution was sonicated for 1-3 min until it became homogeneous. Next, the solution was degassed by sparging with nitrogen for 5-10 min before sealing with Parafilm. The reaction was stirred and irradiated using two 34-W blue LED lamps (3 cm away, with cooling fan to keep the reaction at room temperature) for 1 h. The reaction mixture was removed from the light, cooled to ambient temperature, diluted with water (15 ml) and ethyl acetate (25 ml), and the aqueous layer was extracted with ethyl acetate (3 ¡Á 25 ml). The combined organic layers were washed with brine, dried over Na2SO4, filtered and concentrated. The residue was purified by flash chromatography on silica gel to afford the desired decarboxylative C-N coupling product. For aniline substrates, a solution of these nitrogen nucleophiles in dioxane was used; additionally, if the iodomesitylene dicarboxylate is a liquid, its solution in dioxane was used.

The chemical industry reduces the impact on the environment during synthesis 288-36-8. I believe this compound will play a more active role in future production and life.

Reference:
Article; Liang, Yufan; Zhang, Xiaheng; MacMillan, David W. C.; Nature; vol. 559; 7712; (2018); p. 83 – 88;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Research on new synthetic routes about 1H-1,2,3-Triazole

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it.

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 288-36-8, name is 1H-1,2,3-Triazole, This compound has unique chemical properties. The synthetic route is as follows., 288-36-8

1,2,3-triazole (3.45 g, 50 mmol), 2-iodo-5-methylbenzoic acid (5.24 g, 20 mmol), cesium carbonate (0.57 g, 3.6 mmol), cuprous iodide (0.38 g, 2 mmol), trans-N, N’-dimethyl-1,2-cyclohexanediamine (0.51 g, 3.6 mmol), N, N-dimethylformamide (30 mL)was added sequentially to a 100 mL single-necked round bottom flask and gradually heated under nitrogen to 100 C for 4 hours. The reaction was quenched, cooled, diluted with tap water and washed with ethyl acetate (200 mL x 2). The aqueous layer was acidified with concentrated hydrochloric acid (pH = 1~2) and extracted with ethyl acetate (200 mL x 2). The organic layers were combined and dried over anhydrous sodium sulfate. The filtrate was evaporated under reduced pressure and purified by column chromatography (dichloromethane / methanol (v/v) = 50/1) to give the title compound (yellow solid, 2.76 g, 68%).

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it.

Reference:
Patent; Guangdong Dongyangguang Pharmaceutical Co., Ltd.; Dongguan Dongyangguang Pharmaceutical Research And Development Co., Ltd.; Jin Chuanfei; Du Changfeng; Zhang Yingjun; Liu Yanping; Kou Yuhui; (38 pag.)CN106986859; (2017); A;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Share a compound : Sodium 1,2,4-triazol-1-ide

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it.

41253-21-8, Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps, and cheap raw materials. 41253-21-8, name is Sodium 1,2,4-triazol-1-ide, A new synthetic method of this compound is introduced below.

To a solution of phenol 11a (200 mg, 0.441 mmol) and cesium carbonate (158 mg, 0.485 mmol) in DMF (10 mL) was added 1,2-dibromoethane (96 muL, 1.11 mmol). The resulting mixture was stirred at room temperature for 60 h. After dilution with water, the mixture was extracted with EtOAc. The organic layer was dried over anhydrous MgSO4, filtered and concentrated in vacuo. The residue was carried on to the next step without further purification.To a solution of the crude bromide in DMF (10 mL) was added 1,2,4-triazole sodium derivative (122 mg, 1.34 mmol). The mixture was stirred at room temperature for 15 h. After dilution with water, the mixture was extracted with EtOAc. The organic layer was dried over anhydrous MgSO4, filtered and concentrated in vacuo. The residue was purified using RP preparative HPLC to provide the titled compound 11g (78 mg, 33%, 2 steps). 1H NMR (400 MHz, DMSO-d6) delta 8.59 (s, 1H), 8.02 (s, 1H), 7.95 (s, 1H), 7.77-7.71 (m, 1H), 7.47 (s, 1H), 7.13 (s, 1H), 6.78 (d, J = 3.2 Hz, 1H), 6.62-6.58 (m, 1H), 5.02-4.92 (m, 2H), 4.71-4.35 (m, 8H), 3.71-3.61 (m, 1H), 3.49-3.41 (m, 1H), 3.38-3.15 (m, 5H); MH+ 549.

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it.

Reference:
Article; Lee, Suk Ho; Kim, Min Ju; Lee, Sung-Han; Kim, Jeongmin; Park, Hyun-Ju; Lee, Jinhwa; European Journal of Medicinal Chemistry; vol. 46; 7; (2011); p. 2662 – 2675;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Research on new synthetic routes about 7170-01-6

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 3-Methyl-1H-1,2,4-triazole.

Adding some certain compound to certain chemical reactions, such as: 7170-01-6, name is 3-Methyl-1H-1,2,4-triazole, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 7170-01-6. 7170-01-6

A mixture of compound 5z (220 mg, 0.5 mmol), 3-methyl-1,2,4-triazole (830 mg, 10 mmol; 20 eq.; prepared by the method described in Coll. Czech. Chem. Comm. 1985, 49, 2492), copper powder (63.5 mg, 1 mmol; 2 eq.), potassium carbonate (138 mg, 1 mmol; 2 eq.) was flushed with anhydrous nitrogen and heated in a sealed tube at 160 C. for 11 h. Upon cooling, to the mixture was added MeOH, and the insoluble material was filtered. The filtrate was concentrated in vacuo and purified by C-18 reverse phase column (Prep. System eluting with gradient 0-70% MeOH-water containing 0.1% TFA) to obtain 24 mg (0.049 mmol, Y. 9.8%) of the title compound Example 317 as amorphous powder (TFA salt): MS m/e 488 (MH); 1H NMR (CD3OD) delta ppm 1.30, 1.35 (3H, 2d, J=7 Hz), 2.54 (3H, s, CH3), 3-4.5 (8H, m, CH2N), 4.04, 4.05 (3H, 2s, CH3O), 7.46, 7.47 (5H, 2s, Ar-Hs), 7.85, 7.86 (1H, 2s), 8.28, 8.31 (1H, 2s), 9.22 (1H, s).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 3-Methyl-1H-1,2,4-triazole.

Reference:
Patent; Wang, Tao; Zhang, Zhongxing; Meanwell, Nicholas A.; Kadow, John F.; Yin, Zhiwei; Xue, Qiufen May; Regueiro-Ren, Alicia; Matiskella, John D.; Ueda, Yasutsugu; US2004/110785; (2004); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

The important role of 41253-21-8

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Sodium 1,2,4-triazol-1-ide.

Adding some certain compound to certain chemical reactions, such as: 41253-21-8, name is Sodium 1,2,4-triazol-1-ide, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 41253-21-8. 41253-21-8

A mixture of 2,3-difluorobenzylnitrile (2.27 g, 16.3 mmol) and triazole sodium salt (1.33 g, 14.8 mmol) in tetrahydrofaran (5 mL) and dimethylformamide (10 mL) was stirred at 85 C. for 4 h. After concentration, the residue was purified by flash chromatography (SiO2) eluting with 25%-50% ethyl acetate/hexane. The isolated product was recrystallized from hot ethyl acetate/hexane to give the title compound as white needles (1.51 g, 54% yield). 1H-NMR (500 MHz, CDCl3) delta ppm: 8.50 (1H, d, J=2.4 Hz), 8.25 (1H, s), 7.69-7.67 (1H, m), 7.60-7.57 (2H, m). LCMS [M+H]+ calcd for C9H6N4F: 189.16; found: 189.14.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Sodium 1,2,4-triazol-1-ide.

Reference:
Patent; Bristol-Myers Squibb Company; US2007/111984; (2007); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

The important role of 7170-01-6

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 3-Methyl-1H-1,2,4-triazole.

Adding some certain compound to certain chemical reactions, such as: 7170-01-6, name is 3-Methyl-1H-1,2,4-triazole, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 7170-01-6. 7170-01-6

b) Trityl chloride (19.0 g) was added portionwise to a stirred solution of 3-methyl-1,2,4-triazole (5.6 g, commercial) and triethylamine (9.5 ml) in dichloromethane (200 ml). The mixture was diluted with dichloromethane (100 ml), washed with water (50 ml), dried over magnesium sulphate and evaporated under reduced pressure to give 1-trityl-3-methyl-1,2,4-triazole (19.0 g).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 3-Methyl-1H-1,2,4-triazole.

Reference:
Patent; Zeneca Limited; US5393732; (1995); A;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Share a compound : 288-36-8

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 288-36-8.

288-36-8, These common heterocyclic compound, 288-36-8, name is 1H-1,2,3-Triazole, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

The iodide 19 (6.04 kg, 23.0 mol), THF (45 E) and DMF (9.0 E) were charged to a vessel. Copper iodide (218 g, 1.15 mol) and potassium carbonate (7.94 kg, 57.4 mol) were added and the mixture heated to an internal temperature of40 C. 1,2,3-Triazole (3.16 kg, 46.0 mol) was added as asolution in THF (6.0 E) over half an hour (no exotherm) andheating continued to 65 C. (again no exotherm observed) and the reaction monitored by HPEC. Once complete N,Ndimethylethylenediamine (244 mE, 2.30 mol) was addedand mixture cooled to RT. Aqueous 3.6 M HC1 (36 E) wasadded (exotherm) and the mixture extracted twice with ethylacetate (2×30 E). The combined organics were washed with EiC1 solution (2×20 E). The acid solution assayed for 3.79 kg of 5 (81%) and 4.64 kg of 5 and 20 combined (99%). A solution of acids 5 and 20 (approx. 4.64 kg, 22.9 mol) in THF and EtOAc (approx. 110 E) was concentrated to lowvolume. THF (90 E) was added and the solvent composition checked by ?H NMR to ensure most ethyl acetate had been removed. Sodium tert-butoxide (2.42 kg, 25.2 mol) was added slowly as a solid over 1-2 h (slight exotherm), allowing the sodium salt to form and stirred overnight at RT. The liquors showed a 45:55 ratio of product:starting material and the solid was collected by filtration, washed with THF (2×20 E) and dried in a vacuum oven (T=40 C.) for 15 h to afford 4.22 kg of crude sodium salt. The crude sodium salt (4.22 kg, 14.9 mol) was charged to a 50 E vessel and 3.6 M HC1 (21.2 E) was added with cooling. The slurry was thenstirred at room temperature for 16 h and the off-white solidisolated by filtration. The cake was washed with water (11E) and iPAc/Heptane (2×5 E), then dried in a vacuum oven(T=35 C.) for 15 h to give 3.10 kg of crude acid 5 (97.9ECAP, 92 wt %, corrected weight 2.85 kg, 61% yield from19). The acid 5 (2.85 kg corrected, 14.0 mol) was chargedto a 50 E vessel and EtOAc (28 E) and dilute 0.22 M HC1 (14 E) were added and the mixture stirred until two clear phases resulted. The aqueous layer was removed and the organic layer filtered to remove any particulate matter. Theethyl acetate was reduced to about 8 E and then heptane (15.6 E) was added over 1 h and the liquors sampled to check for appropriate losses. The solid was isolated by filtration, washed with heptane:ethyl acetate (3:1, 4 E) and dried on the filter under nitrogen to give 2.81 kg of acid 5.m.p. 167.5 C. ?H NMR (400 MHz, d5-DMSO): oe 12.09 (brs, 1H), 8.04 (s, 1H), 7.62 (d, 1H, J=8.4 Hz), 7.58 (d, 1H, J=1.2 Hz), 7.49 (dd, 1H, J=8.4, 1.2 Hz), 2.41 (s, 3H). ?3C NMR (100.6 MHz, d5-DMSO): oe 168.0, 139.2, 136.4, 135.8, 132.5, 130.3, 128.7, 124.8, 20.9. HRMS (ESI): mlz [M+H] calcd for C,0H9N302: 204.0773; found: 204.0781.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 288-36-8.

Reference:
Patent; MERCK SHARP & DOHME CORP.; Fleitz, Fred; Mangion, Ian; Yin, Jingjun; (11 pag.)US9441254; (2016); B2;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Share a compound : 7170-01-6

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 7170-01-6.

These common heterocyclic compound, 7170-01-6, name is 3-Methyl-1H-1,2,4-triazole, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route. 7170-01-6

5-(3-Methyl-[1,2,4]triazol-1-yl)-pyrazine-2-carboxylic acid A mixture of methyl 5-chloropyrazine-2-carboxylate (0.75 g), K2CO3 (1.8 g) and 3-methyl-1H-1,2,4-triazole (1.2 g) in N,N-dimethylformamide (6 mL) is heated to 100 C. overnight. Analysis of the crude mixture by LCMS shows saponified product. The product is acidified with 1 N hydrochloric acid and the precipitate is filtered and washed with water and diethyl ether to afford the title compound. LC (method 20): tR=1.21 min; Mass spectrum (APCI): m/z=206 [M+H]+.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 7170-01-6.

Reference:
Patent; Neurocrine Biosciences, Inc.; Boehringer Ingelheim International GmbH; NOSSE, Bernd; ECKHARDT, Matthias; HIMMELSBACH, Frank; LANGKOPF, Elke; ASHWEEK, Neil J.; HARRIOTT, Nicole; US2014/45823; (2014); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Sources of common compounds: 1H-1,2,4-Triazole

According to the analysis of related databases, 1H-1,2,4-Triazole, the application of this compound in the production field has become more and more popular.

288-88-0, In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product. An updated downstream synthesis route of 288-88-0 as follows.

Example 1.17 [0636] Preparation of 1-phenyl-1H-1,2,41 triazole [0637] Operating protocol A (82 C., 48 hours) was followed using 117 mg of Chxn-Py-Al (0.4 mmoles), 336 ?l of iodobenzene (3 mmoles), 138 mg of 1,2,4-triazole (2 mmoles), 1.042 g of caesium carbonate (3.2 mmoles) and 1.2 ml of DMF. [0638] The degree of transformation and selectivity were 100% and 98% respectively. [0639] The residue obtained following treatment was purified by silica gel chromatography (eluent: hexane/dichloromethane, 100/0 to 50/50). [0640] 264 mg of a dark yellow solid was obtained in a yield of 91%. [0641] Pale yellow needles were obtained after re-crystallisation from chloroform. [0642] The compound obtained had the following formula: [CHEMMOL-00056] [0643] The characteristics were as follows: [0644] MPt: 46 C. (CHCl3) (Lit: 46-47 C. given by Micetich, R G; Spevak, P; Hall, T W; Bains, B K; Heterocycles 1985, 23, 1645-1649); [0645] H NMR/CDCl3:? 8.52 (wide s, 1H, HI), 8.04 (wide s, 1H, H2), 7.53-7.65 (m, 2H, H4,8), 7.26-7.51 (m, 3H, H5,6,7); [0646] 13C NMR/CDCl3: ? 152.55 (C1), 140.88 (C2), 139.96 (C3), 129.73 (C5 and C7), 128.15 (C6), 119.99 (C4 and C8); [0647] GC/MS: Rt=14.02 min, M/Z=145, purity=100%; [0648] Rf=0.21 (eluent: dichloromethane/ethyl acetate, 90/10). Example 1.18 [0649] Preparation of 1-phenyl-1H-[1,2,4]triazole [0650] Operating protocol A (82 C., 24 hours) was followed using 117 mg of Chxn-Py-Al (0.4 mmoles), 336 ?l of iodobenzene (3 mmoles), 138 mg of 1,2,4-triazole (2 mmoles), 1.042 g of caesium carbonate (3.2 mmoles) and 1.2 ml of DMF. [0651] The degree of transformation and selectivity were 79% and 99% respectively. [CHEMMOL-00057] Example 1.19 [0652] Preparation of 1-phenyl-1H-[1,2,4]triazole Example 1.18 was repeated, operating at 50 C. (72 hours). The degree of transformation and selectivity for 1-phenyl-1H-[1,2,4-triazole] were 75% and 99% respectively. [0653] [CHEMMOL-00058]

According to the analysis of related databases, 1H-1,2,4-Triazole, the application of this compound in the production field has become more and more popular.

Reference:
Patent; Cellier, Pascal Philippe; Cristau, Henri-Jean; Spindler, Jean-Francis; Taillefer, Marc; US2003/236413; (2003); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Sources of common compounds: 1-Methyl-1H-1,2,3-triazole

According to the analysis of related databases, 1-Methyl-1H-1,2,3-triazole, the application of this compound in the production field has become more and more popular.

16681-65-5, In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product. An updated downstream synthesis route of 16681-65-5 as follows.

General procedure: Intermediate 29: step b (2,6-dimethylpyridin-4-yl)(1-methyl-1H-1,2,3-triazol-5-yl)methanone A solution of n-BuLi (3.8 mL, 9.5 mmol, 2.5 M solution in hexane) was added slowly to a solution of 1 -methyl- l H-1, 2 ,3-triazole (0.83 g, 10 mmol) in THF (48 mL) at -50 C. After- addition, stirring was continued for an additonal 30 minutes and N-methoxy-N ,2,6- trimethylisonicotinamide (0.97 g, 5.0 mmol. Intermediate 29: step a) dissolved in THF (12 mL) was slowly added. An additional 2 mL of THF was used to complete the quantitative addition. The mixture was stirred at -50 C for 5 minutes then warmed to room temperature and stirred overnight. The solution was quenched with saturated aqueous NH4C1. H20 was added and layers were separated. The aqueous layer was extracted with EtOAc and the combined organic extracts washed with brine, dried over MgSCu, filtered and evaporated in vacuo. The crude product was purified using flash column chromatography (0 to 100% EtOAc/DCM) to provide the title compound.

According to the analysis of related databases, 1-Methyl-1H-1,2,3-triazole, the application of this compound in the production field has become more and more popular.

Reference:
Patent; JANSSEN PHARMACEUTICA NV; LEONARD, Kristi A.; BARBAY, Kent; EDWARDS, James P.; KREUTTER, Kevin D.; KUMMER, David A.; MAHAROOF, Umar; NISHIMURA, Rachel; URBANSKI, Maud; VENKATESAN, Hariharan; WANG, Aihua; WOLIN, Ronald L.; WOODS, Craig R.; FOURIE, Anne; XUE, Xiaohua; CUMMINGS, Maxwell D.; JONES, William Moore; GOLDBERG, Steven; WO2015/57205; (2015); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics