Extended knowledge of 1-Methyl-1H-1,2,3-triazole

At the same time, in my other blogs, there are other synthetic methods of this type of compound, 1-Methyl-1H-1,2,3-triazole, and friends who are interested can also refer to it.

16681-65-5, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 16681-65-5 name is 1-Methyl-1H-1,2,3-triazole, This compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.

Example 19a: (3-(4-(1H-pyrazol-1-yl)benzyl)-4-chloro-2-methoxyquinolin-6-yl)(1,2-dimethyl-1H-imidazol-5-yl)(1-methyl-1H-1,2,3-triazol-5-yl)methanol A solution of w-butyllithium in hexanes (2.5 M, 0.32 mL, 0.81 nimol) was added dropwise to a stirring solution of 1 -methyl- 1H- 1 ,2,3-triazole (70.4 mg, 0.848 nimol, prepared according to PCX Int. AppL, 2008098104) in tetrahydrofuran (1 mL) at -50 C. After 20 minutes, a solution (gently warmed with a heat, gun to dissolve the ketone starting material) of (3-(4-(lH-pyrazol-l – yl)benzyl)-4-chk>ro~2-methoxyquinolin-6-yl)(l,2-dimethyl-l H- (200 mg, 0.42 mmol, Intermediate 21 : step b) in tetrahydrofuran (1 mL) was added dropwise. After 5 minutes, the flask was allowed to warm to 23 C. After 20 minutes, water (1 mL) was added. The biphasic mixture was partitioned between saturated aqueous sodium chloride solution (25 mL) and ethyl acetate (50 mL). The layers were separated and the organic layer was dried with sodium sulfate. The dried solution was filtered. Silica gel (2 g) was added to the filtrate and the mixture was concentrated by rotary evaporation to afford a free-flowing powder. The powder was loaded onto a silica gel column for flash column chromatography purification. Elution with dichloro methane initially, grading to 10% methanol-dichloromethane provided the title compound which was further purified by RP-HPLC eluting initially with 5% acetonitrile-water (containing 0,05% trifluoroacetic acid), grading to 95% acetonitrile-water (containing 0.05% trifluoroacetic acid) to provide the title compound as a white solid after partitioning the purified material between dichioromethane-saturated aqueous sodium bicarbonate solution, separating the layers, drying the organic layer with sodium sulfate, filtering the dried solution, and concentrating the filtrate to dryness.lH NMR (400 MHz, CDC13) delta ppm 8.21 (s, IH), 7.85 (d, J = 2.4 Hz, I H), 7.74 (d, J = 8.8 Hz, 1H), 7.67 (d, J = 1.7 Hz, 1H), 7.60 – 7.53 (m, 2H), 7.41 – 7.33 (m, 3H), 7.11 (d, J = 1.4 Hz, IH), 6.46 – 6.39 (m, I H), 6.08 – 6.02 (m, IH), 4,27 (s, 2H), 4.08 (s, 3H), 3.89 (s, 3H), 3.35 (s, 3H), 2.20 (s, 3H); MS (ESI): mass calcd. for C29H27CIN8O2, 554.2; ni/z found, 555.2 j VI ¡¤ Pi | .(3-(4-(]J/-P Tazol-l-yl)benzyl)-4-cMyl)(l-methyl-lH-l ,2,3-triazo3-5-yl)methanol was purified by chiral SFC (Chiralpak AD-H, 5 muetaiota, 250 x 20 mm, mobile phase: 55% CO2, 45% methanol containing 0.03% isopropylamine) to provide two enantiomers. The first eluting enantiomer was Example 19b: NMR (500 MHz, CDC3) delta ppm 8.17 (d, ./ 2.2 Hz, 1 H), 7.88 – 7.84 (m, 1H), 7.78 (d, ./ 8.7 Hz, 1 H), 7.70 – 7.66 (m, 1H), 7.61 – 7.55 (m, 2H), 7.41 – 7.34 (m, 3H), 7.18 (s, 1 H), 6.47 – 6.39 (m, 1H), 6.16 (s, 5 H), 4.32 (s, 2H), 4.10 (s, 31 1). 3.92 (s, 3H), 3.40 (s. 3H), 2.33 (s, 3H); MS { LSI}: mass calcd. for C29H27C3N8O2, 554.2; m/z found, 555.5 [M+H] and the second eluting enantiomer was Example 19c:JH NMR (500 MHz, CDCI3) delta ppm 8.18 (d, J 2.2 Hz, 1H), 7.85 (d, J = 2.5 Hz, I I I). 7.76 id. ./ = 8.8 Hz, 1 1 1). 7.68 (d, ./ = 1.7 Hz, I H), 7.61 – 7.55 (m, 2H), 7.42 – 7.34 (m, 31 1). 7.17 (s, IH), 6.43 (t, ./ 2.1 Hz, }. 6.13 (s, }. 4.31 (s. 2H), 4.10 (s. 3H), 3.91 (s, 3H), 3.39 (s, 3H), 2.31 (s, 3H); MS (ESI): mass calcd. for C29H27CIN8O2, 554.2; m/z found, 555.5 [M+H]+.

At the same time, in my other blogs, there are other synthetic methods of this type of compound, 1-Methyl-1H-1,2,3-triazole, and friends who are interested can also refer to it.

Reference:
Patent; JANSSEN PHARMACEUTICA NV; LEONARD, Kristi A.; BARBAY, Kent; EDWARDS, James P.; KREUTTER, Kevin D.; KUMMER, David A.; MAHAROOF, Umar; NISHIMURA, Rachel; URBANSKI, Maud; VENKATESAN, Hariharan; WANG, Aihua; WOLIN, Ronald L.; WOODS, Craig R.; FOURIE, Anne; XUE, Xiaohua; CUMMINGS, Maxwell D.; JONES, William Moore; GOLDBERG, Steven; WO2015/57205; (2015); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Extended knowledge of 7170-01-6

The synthetic route of 3-Methyl-1H-1,2,4-triazole has been constantly updated, and we look forward to future research findings.

7170-01-6, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 7170-01-6, name is 3-Methyl-1H-1,2,4-triazole belongs to Triazoles compound, it is a common compound, a new synthetic route is introduced below.

Step A Synthesis of 8-methoxy-2-methyl-4-(5-methyl-l//-l,2,4-triazol-l-yl)quinoline and 8- methoxy-2-methyl-4-(3 -methyl- H- 1 ,2,4-triazol- 1 -yl)quinoline4-chloro-8-methoxy-2- methylquinoline (100 mg, 0.481 mmol) was reacted with 3-methyl- IH-l, 2,¡¤ 4-triazole (46.0, 0.554 mmol) according to the synthesis of 4-(4-fluoro- 1 /Y-pyrazol- 1 -yl)-8-mcthoxy-2-mcthylquinolinc to give a mixture of the title compounds. MS (m/z): 255.3 [M+H+] Step B Synthesis of 2-methyl-4-(3-methyl-l//-l,2,4-triazol-l-yl)quinolin-8-ol and 2-methyl- 4-(5-methyl- 1 H- 1 ,2,4-triazol- 1 -yl)quinolin-8-ol (0284) A mixture of 8-mcthoxy-2-mcthyl-4-(5-mcthyl- 1 H- 1 ,2,4-triazol- 1 -yl)quinolinc and 8- mcthoxy-2-mcthyl-4-(3-mcthyl- 1 H- 1 ,2,4-triazol- 1 -yl)quinolinc (153 mg, 0.602 mmol) was demethylated according to the synthesis of 4-(4-fluoro-l//-pyrazol-l-yl)-2-methylquinolin-8-ol to give a mixture of the title compounds. MS (m/z): 241.1 [M+H+] Step C. Synthesis of (5)-2-(l-(3-chloro-5-fluoro-2-((2-methyl-4-(5-methyl-l//-l,2,4-triazol-l- yl)quinolin-8-yloxy)methyl)phenyl)ethyl)isoindoline- 1 ,3-dione and (5)-2-(l -(3-chloro-5-fluoro-2- ((2-methyl-4-(3 -methyl- 1 H- 1 ,2,4-triazol- 1 -yl)quinolin-8-yloxy)methyl)phenyl)ethyl)isoindoline- l,3-dione (0286) A mixture of 2-mcthyl-4-(3-mcthyl- 1 H- 1 ,2,4-triazol- 1 -yl)quinol in-8-ol and 2-methyl-4-(5- mcthyl- 1 H- 1 ,2,4-triazol- 1 -yl)quinol in-8-ol (48.3 mg, 0.201 mmol) was reacted with (5)-2-(l-(3- chloro-2-(chloromethyl)-5-fluorophenyl)ethyl)isoindoline-l,3-dione (70.7 mg, 0.201 mmol) according to the synthesis of (5)-2-(l-(3-chloro-5-fluoro-2-((4-(4-fluoro-l/7-pyrazol-l-yl)-2- methylquinolin-8-yloxy)methyl)phenyl)ethyl)isoindoline-l,3-dione to give a mixture of the title compounds. MS (m/z): 556.4 [M+H+] Step D. Synthesis of (5′)- 1 -(3-chloro-5-fluoro-2-((2-mcthyl-4-(5-mcthyl- 1 H- 1 ,2,4-triazol- 1 – yl)quinolin-8-yloxy)methyl)phenyl)ethanamine and (5)- 1 -(3-chloro-5-fluoro-2-((2-methyl-4-(3- methyl- H- 1 ,2,4-triazol- 1 -yl)quinolin-8-yloxy)methyl)phenyl)ethanamine (0287) A mixture of (S)-2-( 1 -(3-chloro-5-fluoro-2-((2-mcthyl-4-(5-mcthyl- 1 H- 1 ,2,4-triazol- 1 – yl)quinolin-8-yloxy)methyl)phenyl)ethyl)isoindoline- 1 ,3-dione and (5)-2-(l -(3-chloro-5-fluoro-2- ((2-methyl-4-(3 -methyl- 1 H- 1 ,2,4-triazol- 1 -yl)quinolin-8-yloxy)methyl)phenyl)ethyl)isoindoline- l,3-dione (111 mg, 201 miho) was deprotected according to the synthesis of (5)-l-(3-chloro-5- fluoro-2-((4-(4-fluoro- l/ -pyrazol- 1 -yl)-2-methylquinolin-8-yloxy)methyl)phenyl)ethanamine to give the title compounds. MS (m/z): 448.3 [M+Na+] Step E. Synthesis of (5)-7V-(l-(3-chloro-5-fluoro-2-((2-methyl-4-(5-methyl-l//-l,2,4-triazol- l-yl)quinolin-8-yloxy)methyl)phenyl)ethyl)-2-(difluoromethoxy)acetamide and (S)-N-( 1 -(3- chloro-5-fluoro-2-((2-methyl-4-(3 -methyl- H- 1 ,2,4-triazol- 1 -yl)quinolin-8- yloxy)methyl)phenyl)ethyl)-2-(difluoromethoxy)acetamide (0289) A mixture of (/S’)- 1 -(3-chloro-5-fluoro-2-((2-mcthyl-4-(5-mcthyl- 1 H- 1 ,2,4-triazol- 1 – yl)quinolin-8-yloxy)methyl)phenyl)ethanamine and (5)- 1 -(3-chloro-5-fluoro-2-((2-methyl-4-(3- mcthyl- 1 H- 1 ,2,4-triazol- 1 -yl)quinolin-8-yloxy)mcthyl)phcnyl)cthanaminc (19 mg, 43 mhio) was reacted with 2-(difluoromethoxy)acetic acid (7.2 mg, 56 mhio) according to the synthesis of (R)- N-((S)- 1 -(3-chloro-5-fluoro-2-((4-(4-fluoro- 1 /7-pyrazol- 1 -yl)-2-methylquinolin-8- yloxy)methyl)phenyl)ethyl)-2-hydroxypropanamide and purified by HPLC to yield (5′)-/V-( l -(3- chloro-5-fluoro-2-((2-methyl-4-(5-methyl- IH- 1 ,2,4-triazol- 1 -yl)quinolin-8- yloxy)methyl)phenyl)ethyl)-2-(difluoromethoxy)acetamide (MS (m/z): 534.2 [M+H+]) and ( S)-N – (1 -(3 -chloro-5-fluoro-2-((2-methyl-4-(3 -methyl- H- 1 ,2,4-triazol- 1 -yl)quinolin-8- yloxy)methyl)phenyl)ethyl)-2-(difluoromethoxy)acetamide (MS (m/z): 534.0 [M+H+])

The synthetic route of 3-Methyl-1H-1,2,4-triazole has been constantly updated, and we look forward to future research findings.

Reference:
Patent; PHARVARIS B.V.; GIBSON, Christoph; SAUPE, Joern; AMBROSI, Horst-Dieter; HAUSTEDT, Lars Ole; (99 pag.)WO2019/101906; (2019); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Share a compound : 288-36-8

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route 288-36-8, its application will become more common.

Some common heterocyclic compound, 288-36-8, name is 1H-1,2,3-Triazole, molecular formula is C2H3N3, traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route. 288-36-8

Step A: 6-methyl-3-(2H-1,2,3-triazol-2-yl)picolinonitrile To 3-bromo-5-methylpicolinonitrile (2.2 g, 11 mmol) in DMF (28 mL) was added K2CO3 (1.7 g, 12 mmol) and 2H-1,2,3-triazole (650 muL, 11 mmol). The mixture was heated to 100 C. for 36 h, cooled to rt and extracted with EtOAc. The combined organics were dried (Na2SO4) and concentrated. Purification via silica gel chromatography (10-100% EtOAc in hexanes) gave the title compound (1 g, 48%).

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route 288-36-8, its application will become more common.

Reference:
Patent; Janssen Pharmaceutica NV; GELIN, Christine F.; LEBOLD, Terry P.; SHIREMAN, Brock T.; US2014/275118; (2014); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

The important role of 1,2,4-Triazole-3-carboxylic acid

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it.

4928-87-4, Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 4928-87-4, name is 1,2,4-Triazole-3-carboxylic acid, This compound has unique chemical properties. The synthetic route is as follows.

Example 2 1-(1-(1H-1,2,4-triazole-3-carbonyl)piperidin-3-yl)-3-methyl-8-(6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-yl)-1H-imidazo[4,5-c]quinolin-2(3H)-one 20 mg (0.0455 mmol) of Compound 111, 6.2 mg (0.0546 mmol) of 1H-1,2,4-triazole-3-carboxylic acid, 9.23 mg (0.0683 mmol) of HOBt and 13.09 mg of EDCI were suspended in 2 ml of dichloromethane, added with 13.9 mg (0.137 mmol) of triethylamine, and stirred at room temperature for 4 h. TLC (DCM: MeOH = 10: 1) showed that most of the raw materials were not reacted. 9.3 mg of 1H-1,2,4-triazole-3-carboxylic acid, 26 mg of HATU and 15 mg of triethylamine were supplemented, and stirred at room temperature overnight. TLC (DCM: MeOH = 10: 1) showed that most of the raw materials were reacted completely. 10 mL of saturated sodium bicarbonate solution was added and stirred for 1 h. The organic phase was separated off, and the aqueous phase was extracted with 2 * 5 ml of dichloromethane. The organic phases were combined, dried, evaporated to dryness, and purified by preparative TLC (dichloromethane: methanol = 10: 1) to afford the target compound of Example 2 (17.8 mg), as a light yellow powder. Yield: 73%. LC-MS: 535 [M+1]+, tR = 1.463 min. 1H NMR (400 MHz, DMSO+D2O) delta 9.41 (d, J = 7.9 Hz, 1H), 9.14 (d, J = 6.0 Hz, 1H), 9.00 – 8.91 (m, 1H), 8.87 – 8.79 (m, 1H), 8.78 – 8.65 (m, 2H), 8.64 – 8.44 (m, 2H), 8.39 (s, 1H), 8.22 – 7.96 (m, 1H), 5.56 – 4.07 (m, 3H), 4.00 (d, J = 16.3 Hz, 3H), 3.60 (d, J = 13.2 Hz, 3H), 3.44 – 3.17 (m, 2H), 3.00 – 2.82 (m, 1H), 2.31 – 2.14 (m, 1H).

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it.

Reference:
Patent; Beijing Forelandpharma Co. Ltd.; ZHANG, Xingmin; JI, Qi; WANG, Lei; GAO, Congmin; WANG, Ensi; DU, Zhenjian; GONG, Longlong; CHEN, Bo; (137 pag.)EP3072893; (2016); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

The important role of 288-36-8

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 288-36-8.

288-36-8, Adding some certain compound to certain chemical reactions, such as: 288-36-8, name is 1H-1,2,3-Triazole, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 288-36-8.

1,2,3-triazole(0.7 ), 2-iodo-benzoic acid (1.0 ), cesium carbonate (2.36 g, 7.20 mmol)Trans-N, N’-dimethyl-1,2-cyclohexanediamine (0.10 g, 0.75 mmol), cuprous iodide (0.08 g, 0.40 mmo 1), N, N-dimethyl Amide (18 mL)Were successively added to a 100 mL single-necked round bottom flask and gradually warmed to 100 C for 4 hours under nitrogen protection.The reaction was quenched, cooled, diluted with tap water and extracted with ethyl acetate (200 mL X).The aqueous layer was acidified with concentrated hydrochloric acid (rhoH- = 1 ~ 2) and extracted with ethyl acetate (200 mL x 2). The combined organic layers were dried and dried over anhydrous sodium sulfate. The filtrate was evaporated under reduced pressure and purified by column chromatography. (Dichloromethane / methanol (v / v) = 30/1) gave the title compound (yellow solid, 0.511 g, 67%)

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 288-36-8.

Reference:
Patent; Guangdong Dongyangguang Pharmaceutical Co., Ltd.; Jin Chuanfei; Wei Dehuo; Xue Yaping; Zhang Yingjun; (44 pag.)CN106674207; (2017); A;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Brief introduction of 288-36-8

The chemical industry reduces the impact on the environment during synthesis 288-36-8. I believe this compound will play a more active role in future production and life.

The chemical industry reduces the impact on the environment during synthesis 288-36-8, name is 1H-1,2,3-Triazole, I believe this compound will play a more active role in future production and life. 288-36-8

General procedure: To a 20 ml or 40 ml viale quipped with a stir bar was added photocatalyst, nitrogen nucleophile, iodomesitylene dicarboxylate, copper salt, and ligand. Dioxane was added followed by addition of the base. The solution was sonicated for 1-3 min until it became homogeneous. Next, the solution was degassed by sparging with nitrogen for 5-10 min before sealing with Parafilm. The reaction was stirred and irradiated using two 34-W blue LED lamps (3 cm away, with cooling fan to keep the reaction at room temperature) for 1 h. The reaction mixture was removed from the light, cooled to ambient temperature, diluted with water (15 ml) and ethyl acetate (25 ml), and the aqueous layer was extracted with ethyl acetate (3 ¡Á 25 ml). The combined organic layers were washed with brine, dried over Na2SO4, filtered and concentrated. The residue was purified by flash chromatography on silica gel to afford the desired decarboxylative C-N coupling product. For aniline substrates, a solution of these nitrogen nucleophiles in dioxane was used; additionally, if the iodomesitylene dicarboxylate is a liquid, its solution in dioxane was used.

The chemical industry reduces the impact on the environment during synthesis 288-36-8. I believe this compound will play a more active role in future production and life.

Reference:
Article; Liang, Yufan; Zhang, Xiaheng; MacMillan, David W. C.; Nature; vol. 559; 7712; (2018); p. 83 – 88;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

The important role of 1H-1,2,3-Triazole

At the same time, in my other blogs, there are other synthetic methods of this type of compound, 1H-1,2,3-Triazole, and friends who are interested can also refer to it.

As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 288-36-8 name is 1H-1,2,3-Triazole, This compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below. 288-36-8

To a solution of 2-iodobenzoic acid (3.0 g, 12.1 mmol) in DMF was added 1,2,3- triazole (1.5 g, 21.7 mmol), Cs2CO3 (7.1 g, 21.7 mmol), Cul (114 mg, 0.6 mmol), and trans-N,N?dimethylcyclohexane- 1 ,2-diamine (310 mg, 2.2 mmol). After heating at 120 C for 10 mm in amicrowave reactor, the mixture was cooled to room temperature, diluted with EtOAc, and filtered through Celite. The filtrate was concentrated in vacuo and the crude residue was purified by silica gel chromatography (MeOH in DCM with 0.1% AcOH) to give Intermediate N as the faster eluting isomer. ?H NMR (DMSO-d6, 500MHz) oe 13.05 (brs, 1 H), 8.12 (s, 2H), 7.8 1-7.52 (m, 4H).

At the same time, in my other blogs, there are other synthetic methods of this type of compound, 1H-1,2,3-Triazole, and friends who are interested can also refer to it.

Reference:
Patent; MERCK SHARP & DOHME CORP.; KUDUK, Scott, D.; REGER, Thomas, S.; ROECKER, Anthony, J.; (0 pag.)WO2016/85783; (2016); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Continuously updated synthesis method about 4314-22-1

Statistics shows that 4314-22-1 is playing an increasingly important role. we look forward to future research findings about 2-(1H-1,2,3-Triazol-1-yl)acetic acid.

4314-22-1, name is 2-(1H-1,2,3-Triazol-1-yl)acetic acid, belongs to Triazoles compound, is considered to be a conventional heterocyclic compound, which is widely used in drug synthesis. The chemical synthesis route is as follows. 4314-22-1

To a stirred mixture of 5 (65 mg, 0.173 mmol), 1 – 1 ,2,3-triazoleacetic acid (6, 22 mg, 0.173 mmol), and Hunig’s base (0.091 mL, 0.522 mmol) in DMF (2 ml) was added HATU (66 mg, 0.174 mmol) and the reaction mixture was stirred for 30 min. The crude mixture was directly purified by prep. HPLC to give 7 (39 mg, 46%). -NMR (400MHz, d6-DMSO): 513.0 (s, IH), 8.34 (bs, IH), 8.16-8.1 1 (m, 2H), 8.00-7.95 (m, 2H), 7.71 (s, IH), 7.55-7.42 (m, 2H), 7.19 (q, IH), 5.51-5.43 (2s, 2H), 4.86-4.83 (m, 2H), 3.81-3.52 (m, 4H), 3.13-3.12 (2s, 3H), 3.04-2.97 (2s, 3H), 2.64-2.63 (2s, 3H). MS (EI) for C24H27N, ,0, found 486 (MH+).

Statistics shows that 4314-22-1 is playing an increasingly important role. we look forward to future research findings about 2-(1H-1,2,3-Triazol-1-yl)acetic acid.

Reference:
Patent; EXELIXIS, INC.; LEAHY, James, William; WO2012/37204; (2012); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Introduction of a new synthetic route about 1-Methyl-1H-1,2,3-triazole

At the same time, in my other blogs, there are other synthetic methods of this type of compound, 1-Methyl-1H-1,2,3-triazole, and friends who are interested can also refer to it.

As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 16681-65-5 name is 1-Methyl-1H-1,2,3-triazole, This compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below. 16681-65-5

The title compound was prepared according to No. WO2008 / 135826 International Patent Application Publication. In 1-methyl -1H-1,2,3- triazole (1.0g, 12.0 mmol, prepared according to International Patent Application No. 2008098104) 50 mL 2-neck flask containing, by the addition of THF (45 mL) , colorless solution was cooled to -40 . Then, by adding dropwise the (2.5 M, 4.8 mL, 12.0 mmol in hexane) n-BuLi, to give a dark reddish brown viscous solution. The mixture was stirred for 45 minutes at -30 to -20 in the following, was introduced into a pure DMF (3mL, 38.5 mmol) at -10 . The mixture was allowed to warm to room temperature, after stirring for 60 minutes, poured into water. Extract the aqueous portion with EtOAc (4 ¡Á 50 mL), the combined organics washed with brine, dried with MgSO4, filtered, and concentrated. The aqueous portion was extracted with DCM (3 ¡Á 50 mL) station, and dried as described above. The combined organics were concentrated to give a light brown oil The UV activity much higher than the starting material. DCM-25% CH3CN, according to TLC or of from 25% EtOAc-DCM, showed the product has a slightly higher Rf than the starting material. (With 100% DCM, 25% CH3CN-DCM increased) by silica gel chromatography on to give the title compound as a colorless oil.

At the same time, in my other blogs, there are other synthetic methods of this type of compound, 1-Methyl-1H-1,2,3-triazole, and friends who are interested can also refer to it.

Reference:
Patent; Janssen Pharmaceuticals N.V; Leonardo, Christi.A.; Barvei, Kent; Edward, James P.; Gloita, Kevin D.; Kummer, David .A.; Maharoof, Umar; Nishimura, Rachael; Urbanski, Mode; Venkatesan, Hariharan; Wang, Ai Hua; Olin, Ronald L.; Woods, Craig; Fourier, Anne; Shu, Jih; Cumings, Maxwell D.; (86 pag.)KR2016/68948; (2016); A;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Simple exploration of Sodium 1,2,4-triazol-1-ide

According to the analysis of related databases, 41253-21-8, the application of this compound in the production field has become more and more popular.

41253-21-8, Adding a certain compound to certain chemical reactions, such as: 41253-21-8, name is Sodium 1,2,4-triazol-1-ide, belongs to Triazoles compound, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 41253-21-8.

5-Fluoro-2-(lH-l,2,4-triazol-l~yl)benzonitrile. A suspension of 2,5- diflurobenzonitrile (4.5 g, 32.35 mmol) and 1,2,4-triazole sodium salt (3.6 g, 40 mmol) in dimethylformamide (40 mL) was heated at 80 0C for 15 h. The reaction mixture was then cooled, diluted with CH2Cl2 (200 mL), washed with water (3 X 30 mL) and brine (30 mL), then dried (Na2SO4), filtered and concentrated to give a white solid which was purified by flash column chromatography (SiO2) using 1 : 1 to 3:1 ethyl acetate/Hexanes to afford the title compound (2.98 g, 49% yield) as a white powder. 1H NMR (500 MHz, CDCl3) delta: 8.70 (IH, s), 8.18 (IH, s), 7.76 (IH, dd, J = 9.0, 4.8 Hz), 7.55 (IH, dd, J = 7.3, 2.8 Hz), 7.51-7.47 (IH, m). LCMS (M+H) calcd for C9H6FN4: 189.17; found: 189.10.

According to the analysis of related databases, 41253-21-8, the application of this compound in the production field has become more and more popular.

Reference:
Patent; BRISTOL-MYERS SQUIBB COMPANY; WO2007/64316; (2007); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics