Research on new synthetic routes about 16681-65-5

The result showed that such a combination of chemo- and biocatalysis improved the catalytic yield more than two times compared with that of sole metal catalysis.I hope my blog about 1-Methyl-1H-1,2,3-triazole is helpful to your research.

Reference of 16681-65-5, New Advances in Chemical Research in 2021.In classical electrochemical theory, both the electron transfer rate and the adsorption of reactants at the electrode control the electrochemical reaction. 16681-65-5, name is 1-Methyl-1H-1,2,3-triazole, molecular formula is C3H5N3, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, below Introduce a new synthetic route.

To a flask containing 1-methyl-1H-1,2,3-triazole (275 mg, 3.31 mmol) was added THF (10 mL) and the solution was cooled to -45 C. using a CH3CN-CO2 bath. n-BuLi (2.5 M in hexanes, 1.4 mL, 3.5 mmol) was added dropwise which afforded an opaque white suspension. The mixture was stirred at -43 C. for 20 minutes, then a homogeneous solution of (4-chloro-3-isobutyl-2-methoxyquinolin-6-yl)(1,2-dimethyl-1H-imidazol-5-yl)methanone (550 mg, 1.48 mmol, Intermediate 65) in 3 mL THF was introduced. After 10 minutes, the reaction flask was then placed in an ice-water bath. The reaction mixture was quenched after 30 minutes with aqueous NH4Cl solution and the aqueous portion was extracted with EtOAc (4*30 mL) and EtOAc:THF (1:1, 30 mL). The combined organics were washed with brine, dried over MgSO4, filtered and concentrated. Chromatography on silica gel (5% MeOH-DCM increasing to 10% MeOH-DCM) provided the title compound as a tan amorphous solid. 1H NMR (400 MHz, CD3OD) delta 8.19 (d, J=2.1 Hz, 1H), 7.85 (d, J=8.7 Hz, 1H), 7.52 (dd, J=8.7, 2.2 Hz, 1H), 7.17 (s, 1H), 6.11 (s, 1H), 4.09 (s, 3H), 3.98 (s, 3H), 3.47 (s, 3H), 2.85 (d, J=7.3 Hz, 2H), 2.37 (s, 3H), 2.11 (hept, J=6.9 Hz, 1H), 0.96 (d, J=6.6 Hz, 6H). MS (ESI): mass calcd. for C23H27ClN6O2, 454.2. m/z found 455.0 [M+H]+. The racemate was separated by chiral SFC (Stationary phase: CHIRALPAK AD-H 5 mum, 250×30 mm, Mobile phase: 70% CO2, 30% mixture of MeOH/iPrOH 50/50 v/v (+0.3% iPrNH2)), to give Example 134b as the first compound that eluted from the chiral column and Example 134c as the second compound that eluted from the chiral column.

The result showed that such a combination of chemo- and biocatalysis improved the catalytic yield more than two times compared with that of sole metal catalysis.I hope my blog about 1-Methyl-1H-1,2,3-triazole is helpful to your research.

Reference:
Patent; JOHNSON & JOHNSON; LEONARD, KRISTI A.; BARBAY, KENT; EDWARDS, JAMES P.; KREUTTER, KEVIN D.; KUMMER, DAVID A.; MAHAROOF, UMAR; NISHIMURA, RACHEL; URBANSKI, MAUD; VENKATESAN, HARIHARAN; WANG, AIHUA; WOLIN, RONALD L.; WOODS, CRAIG R.; FOURIE, ANNE; XUE, XIAOHUA; CUMMINGS, MAXWELL D.; MCCLURE, KELLY; TANIS, VIRGINIA; US2015/111870; (2015); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Analyzing the synthesis route of 16681-65-5

We very much hope you enjoy reading the articles and that you will join us to present your own research about 16681-65-5, Happy reading!

Related Products of 16681-65-5, New Advances in Chemical Research in 2021. Redox catalysis has been broadly utilized in electrochemical synthesis due to its kinetic advantages over direct electrolysis. 16681-65-5, name is 1-Methyl-1H-1,2,3-triazole, molecular formula is C3H5N3, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, below Introduce a new synthetic route.

A solution of n-butyllithium in hexanes (2.5 M, 22.5 mL, 56.3 mmol) was added dropwise by syringe to a stirring solution of 1-methyl-1H-1,2,3-triazole (5.00 g, 60.2 mmol, prepared according to PCT Int. Appl., 2008098104) in dry tetrahydrofuran (400 mL) at -55 C. The resulting off-white slurry was stirred at -45 C. for 20 minutes, whereupon a solution of 2,6-dimethyl-pyridine-3-carbaldehyde (8.33 g, 61.7 mmol) in dry tetrahydrofuran (10 mL) was added dropwise by syringe. After 5 minutes, the cooling bath was removed and the reaction mixture was allowed to slowly warm. After 45 minutes, saturated aqueous ammonium chloride solution (10 mL) and ethyl acetate (100 mL) were added. The mixture was concentrated by rotary evaporation. The residue was dissolved in ethyl acetate (300 mL). The organic solution was washed with saturated aqueous sodium chloride solution (100 mL, containing excess solid sodium chloride). The aqueous layer was extracted with ethyl acetate (2*100 mL). The organic layers were combined and the combined solution was concentrated. Ether (100 mL) was added to the residue and the mixture was sonicated for 20 minutes during which time a white solid crashed out. The solids were collected by filtration. Ether (100 mL) was added to the collected solids and the mixture sonicated a second time. After 20 minutes, the mixture was filtered and the solids were collected to provide the title compound as a fine powder.

We very much hope you enjoy reading the articles and that you will join us to present your own research about 16681-65-5, Happy reading!

Reference:
Patent; JOHNSON & JOHNSON; LEONARD, KRISTI A.; BARBAY, KENT; EDWARDS, JAMES P.; KREUTTER, KEVIN D.; KUMMER, DAVID A.; MAHAROOF, UMAR; NISHIMURA, RACHEL; URBANSKI, MAUD; VENKATESAN, HARIHARAN; WANG, AIHUA; WOLIN, RONALD L.; WOODS, CRAIG R.; FOURIE, ANNE; XUE, XIAOHUA; CUMMINGS, MAXWELL D.; MCCLURE, KELLY; TANIS, VIRGINIA; US2015/111870; (2015); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

A new synthetic route of 16681-65-5

Therefore, this conceptually novel strategy might open impressive avenues to establish green and sustainable chemistry platforms.In my other articles, you can also check out more blogs about 1-Methyl-1H-1,2,3-triazole.

Reference of 16681-65-5, New discoveries in chemical research and development in 2021. We’ll be discussing some of the latest developments in chemical about CAS: 16681-65-5, name is 1-Methyl-1H-1,2,3-triazole, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

A solution of 1-methyl-1H-1,2,3-triazole (0.28 g, 3.37 mmol) in dry THF (3 mL) was cooled in a -78 C. bath and n-butyllithium (2.5 M in hexanes, 1.26 mL, 3.15 mmol) was added dropwise over a 20 minute period. The suspension was stirred in the cold bath for 30 minutes and then 1-acetyl-N-methoxy-N-methylpiperidine-4-carboxamide (0.74 g, 3.45 mmol, Intermediate 52: step a) dissolved in THF (3 mL) was added dropwise. The resulting suspension was stirred at -78 C. for 5 minutes then warmed to 0 C. and stirred for an additional 30 minutes. The mixture was warmed to room temperature and stirred for 2.5 hours then quenched with saturated aqueous NH4Cl. The aqueous mixture was extracted with EtOAc (2*). The combined EtOAc extracts were dried over Na2SO4, filtered, concentrated to dryness and chromatographed (EtOAc/DCM) to provide the title compound.

Therefore, this conceptually novel strategy might open impressive avenues to establish green and sustainable chemistry platforms.In my other articles, you can also check out more blogs about 1-Methyl-1H-1,2,3-triazole.

Reference:
Patent; Janssen Pharmaceutica NV; Leonard, Kristi A.; Barbay, Kent; Edwards, James P.; Kreutter, Kevin D.; Kummer, David A.; Maharoof, Umar; Nishimura, Rachel; Urbanski, Maud; Venkatesan, Hariharan; Wang, Aihua; Wolin, Ronald L.; Woods, Craig R.; Fourie, Anne; Xue, Xiaohua; Cummings, Maxwell D.; Jones, William Moore; Goldberg, Steven; US2015/105366; (2015); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Something interesting about 16681-65-5

The catalyzed pathway has a lower Ea, but the net change in energy that results from the reaction is not affected by the presence of a catalyst. In my other articles, you can also check out more blogs about 16681-65-5

Research speed reading in 2021. The dynamic chemical diversity of the numerous elements, ions and molecules that constitute the basis of life provides wide challenges and opportunities for research. 16681-65-5, name is 1-Methyl-1H-1,2,3-triazole belongs to triazoles compound, it is a common compound, a new synthetic route is introduced below. Quality Control of 1-Methyl-1H-1,2,3-triazole

Intermediate 45: Step a (2,4-Dimethylthiazol-5-yl)(1-methyl-1H-1,2,3-triazol-5-yl)methanol To a flask containing 1-methyl-1H-1,2,3-triazole (1.60 g, 19.3 mmol, Intermediate 42, step a) was added THF (200 mL) and the solution was cooled to -40 C. To this colorless homogeneous solution was added n-BuLi (2.5 M in hexanes, 7.7 mL, 19.2 mmol) dropwise which immediately afforded a dark brown viscous mixture. The mixture was kept between -10 to -20 C. for 60 min, then 2,4-dimethylthiazole-5-carbaldehyde (3.03 g, 21.5 mmol) in THF (5 mL) was introduced and the reaction mixture began to stir much more easily, but still remained brownish. Once the aldehyde was added the reaction was placed in an ice-bath and maintained there until it warmed to room temp. After 3 hours the reaction was quenched by pouring into a saturated solution of NH4Cl at room temperature. The aqueous portion was extracted with EtOAc (5*100 mL). The combined organics were washed with brine, dried over MgSO4, filtered and concentrated to give a brown oil-foam. Flash chromatography on silica gel (10-30% acetone increasing gradient to 10% MeOH-DCM) gave the title compound as a light orange foam.

The catalyzed pathway has a lower Ea, but the net change in energy that results from the reaction is not affected by the presence of a catalyst. In my other articles, you can also check out more blogs about 16681-65-5

Reference:
Patent; Janssen Pharmaceutica NV; Leonard, Kristi A.; Barbay, Kent; Edwards, James P.; Kreutter, Kevin D.; Kummer, David A.; Maharoof, Umar; Nishimura, Rachel; Urbanski, Maud; Venkatesan, Hariharan; Wang, Aihua; Wolin, Ronald L.; Woods, Craig R.; Fourie, Anne; Xue, Xiaohua; Mirzadegan, Taraneh; Ganamet, Kelly; US2014/107097; (2014); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

A new synthetic route of 16681-65-5

If you are hungry for even more, make sure to check my other article about 16681-65-5, the application of this compound in the production field has become more and more popular.

New discoveries in chemical research and development in 2021. Chemo-enzymatic cascade processes are invaluable due to their ability to rapidly construct high-value products from available feedstock chemicals in a one-pot relay manner. 16681-65-5, name is 1-Methyl-1H-1,2,3-triazole belongs to triazoles compound, it is a common compound, a new synthetic route is introduced below. Safety of 1-Methyl-1H-1,2,3-triazole

To a flask containing 1-methyl-1H-1,2,3-triazole (430 mg, 0.8 mmol) was added THF (15 mL) and the solution was cooled to -43 C. using a CH3CN-CO2 bath. Then, n-BuLi, (2.5 M in hexanes, 0.7 mL, 1.75 mmol) was added dropwise. The reaction mixture was stirred at -40 C. for 30 minutes, then tert-butyl-3-(4-chloro-2-methoxy-3-(4-(trifluoromethyl)benzyl)quinoline-6-carbonyl)-azetidine-1-carboxylate (430 mg, 0.8 mmol, Intermediate 61: step b) in 2 mL THF was introduced. The reaction mixture was allowed to warm to room temperature over 30 minutes, and was quenched after 45 minutes with aqueous NH4Cl solution. The aqueous portion was extracted with EtOAc (3*30 mL). The combined organics were washed with brine, dried over MgSO4, filtered and concentrated. Chromatography on Silica gel (10% acetone-hexane increasing to 30% acetone) afforded the title compound as a white amorphous solid. 1H NMR (500 MHz, CDCl3) delta 8.24 (d, J=2.1 Hz, 1H), 7.78 (d, J=8.8 Hz, 1H), 7.56-7.47 (m, 3H), 7.40 (d, J=8.1 Hz, 2H), 7.35 (dd, J=8.7, 2.1 Hz, 1H), 4.35 (s, 2H), 4.20 (t, J=8.8 Hz, 1H), 4.07 (s, 3H), 4.00 (dd, J=9.3, 5.6 Hz, 1H), 3.92 (dd, J=8.9, 5.7 Hz, 1H), 3.67 (s, 3H), 3.62 (t, J=8.8 Hz, 1H), 3.52-3.38 (m, 1H), 1.38 (s, 9H); MS (ESI): mass calcd: Chemical Formula: C30H31ClF3N5O4; Exact Mass: 617.2. m/z found 617.8 [M+H]+.

If you are hungry for even more, make sure to check my other article about 16681-65-5, the application of this compound in the production field has become more and more popular.

Reference:
Patent; Janssen Pharmaceutica NV; Leonard, Kristi A.; Barbay, Kent; Edwards, James P.; Kreutter, Kevin D.; Kummer, David A.; Maharoof, Umar; Nishimura, Rachel; Urbanski, Maud; Venkatesan, Hariharan; Wang, Aihua; Wolin, Ronald L.; Woods, Craig R.; Fourie, Anne; Xue, Xiaohua; Cummings, Maxwell D.; Jones, William Moore; Goldberg, Steven; US2015/105366; (2015); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Chemical Properties and Facts of 1-Methyl-1H-1,2,3-triazole

By the way, if you are interested in learning more fun chemistry with your kids, get your hands into one chemistry set now, and start enjoying the best part of chemistry: experiments about 1-Methyl-1H-1,2,3-triazole.

Electric Literature of 16681-65-5, New discoveries in chemical research and development in 2021. We’ll be discussing some of the latest developments in chemical about CAS: 16681-65-5, name is 1-Methyl-1H-1,2,3-triazole, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

[00112] 1 -Methyl-1 H-1 ,2,3-triazole (41 mg, 0.495 mmol) was dissolved in THF (4.9 mL) and cooled to -78 C. n-Butyllithium solution in hexanes (240 muIota_, 0.594 mmol) was added dropwise and the solution was stirred for further 5 min before zinc(ll) chloride (3.0 mL, 1 .485 mmol) was added. After 30 min at -78 C, the reaction mixture was diluted with DMF (2.0 mL), tetrakis(triphenylphosphine)palladium(0) (29 mg, 0.025 mmol) and a solution of 4-bromo-2-methoxy-1 -nitrobenzene (1 15 mg, 0.495 mmol) in DMF (500 mu) were added. The solution was stirred at 80 C for 2.5 h. After the mixture was cooled to room temperature, water and EtOAc were added and the phases were separated. The organic phase was washed with water, brine, dried (Na2S04) and the solvent was removed in vacuo. The residue was purified by Biotage silica gel column chromatography eluting with DCM/EtOAc (99/1 to 90/10, 10 g column) to afford the title product as a pale yellow solid (82 mg, 70.7 %). 1 H NMR (500 MHz, CDCI3): <5 4.04 (s, 3H), 4.14 (s, 3H), 7.10-7.13 (m, 2H), 7.82 (s, 1 H), 7.98-8.01 (m, 1 H); LC (Method B)-MS (ESI, m/z) fR 1 .97 min, 235 [(M+H+), 100%]. By the way, if you are interested in learning more fun chemistry with your kids, get your hands into one chemistry set now, and start enjoying the best part of chemistry: experiments about 1-Methyl-1H-1,2,3-triazole. Reference:
Patent; CANCER RESEARCH TECHNOLOGY LIMITED; NAUD, Sebastien Gaston Andre; BLAGG, Julian; (38 pag.)WO2017/109476; (2017); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Now Is The Time For You To Know The Truth About 16681-65-5

Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data. If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 1-Methyl-1H-1,2,3-triazole, in my other articles.

Research speed reading in 2021. In classical electrochemical theory, both the electron transfer rate and the adsorption of reactants at the electrode control the electrochemical reaction. 16681-65-5, name is 1-Methyl-1H-1,2,3-triazole belongs to triazoles compound, it is a common compound, a new synthetic route is introduced below. category: Triazoles

Intermediate 18: 1-Methyl-1H-1,2,3-triazole-5-carbaldehydeThe title compound was prepared according to the patent application WO2008/135826. To a 50 mL 2-necked flask containing 1-methyl-1H-1,2,3-triazole (1.0 g, 12.0 mmol, prepared according to PCT Int. AppL 2008098104) was added THF (45 mL) and the colorless solution was cooled to -40 C. Then, n-BuLi (2.5 M in hexanes, 4.8 mL, 12.0 mmol) was added dropwise which afforded a dark reddish-brown viscous solution. The mixture was stirred between -30 to -20 C for 45 minutes, then neat DMF (3 mL, 38,5 mmol) was introduced at -10 C. The mixture was allowed to warm up to room temperature and stirred for 60 minutes, followed by pouring into water. The aqueous portion was extracted with EtOAc (4 x 50 mL) and the combined organics were washed with brine, dried over MgSO4, filtered and concentrated. The aqueous portion was back- extracted with DCM (3 x 50 mL) and dried as above. The combined organics were concentrated to give a light brown oil that was much more UV active than the starting material, TLC in either 25% CH3CN-DCM or 25% EtOAc-DCM showed the product to have a slightly higher Rf than the starting material. Chromatography on silica gel (100% DCM increasing to 25% CH3CN-DCM) provided the title compound as a colorless oil.

Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data. If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 1-Methyl-1H-1,2,3-triazole, in my other articles.

Reference:
Patent; JANSSEN PHARMACEUTICA NV; LEONARD, Kristi, A.; BARBAY, Kent; EDWARDS, James, P.; KREUTTER, Kevin, D.; KUMMER, David, A.; MAHAROOF, Umar; NISHIMURA, Rachel; URBANSKI, Maud; VENKATESAN, Hariharan; WANG, Aihua; WOLIN, Ronald, L.; WOODS, Craig, R.; FOURIE, Anne; XUE, Xiaohua; CUMMINGS, Maxwell, D.; WO2015/57206; (2015); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Extended knowledge of 16681-65-5

I am very proud of our efforts over the past few months and hope to 1-Methyl-1H-1,2,3-triazole help many people in the next few years.

Application of 16681-65-5, New Advances in Chemical Research in 2021. Chemo-enzymatic cascade processes are invaluable due to their ability to rapidly construct high-value products from available feedstock chemicals in a one-pot relay manner. 16681-65-5, name is 1-Methyl-1H-1,2,3-triazole, molecular formula is C3H5N3, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, below Introduce a new synthetic route.

The title compound was prepared according to the patent application WO2008/135826. To a 50 mL 2-necked flask containing 1-methyl-1H-1,2,3-triazole (1.0 g, 12.0 mmol, prepared according to PCT Int. Appl., 2008098104) was added THF (45 mL) and the colorless solution was cooled to -40 C. Then, n-BuLi (2.5 M in hexanes, 4.8 mL) was added dropwise which afforded a dark reddish-brown viscous solution. The mixture was stirred between -30 to -20 C. for 45 minutes, then neat DMF (3 mL, 38.5 mmol) was introduced at -10 C. The mixture was allowed to warm up to room temperature and stirred for 60 minutes, followed by pouring into water. The aqueous portion was extracted with EtOAc (4*50 mL) and the combined organics were washed with brine, dried over MgSO4, filtered and concentrated. The aqueous portion was back-extracted with DCM (3*50 mL) and dried as above. The combined organics were concentrated to give a light brown oil that was much more UV active than the starting material. TLC in either 25% CH3CN-DCM or 25% EtOAc-DCM showed the product to have a slightly higher Rf than the starting material. Chromatography on silica gel (100% DCM increasing to 25% CH3CN-DCM) provided the titled material as a colorless oil.

I am very proud of our efforts over the past few months and hope to 1-Methyl-1H-1,2,3-triazole help many people in the next few years.

Reference:
Patent; Janssen Pharmaceutica NV; Leonard, Kristi A.; Barbay, Kent; Edwards, James P.; Kreutter, Kevin D.; Kummer, David A.; Maharoof, Umar; Nishimura, Rachel; Urbanski, Maud; Venkatesan, Hariharan; Wang, Aihua; Wolin, Ronald L.; Woods, Craig R.; Pierce, Joan; Goldberg, Steven; Fourie, Anne; Xue, Xiaohua; US2014/107094; (2014); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

New downstream synthetic route of 1-Methyl-1H-1,2,3-triazole

By the way, if you are interested in learning more fun chemistry with your kids, get your hands into one chemistry set now, and start enjoying the best part of chemistry: experiments about 1-Methyl-1H-1,2,3-triazole.

Application of 16681-65-5, New discoveries in chemical research and development in 2021. We’ll be discussing some of the latest developments in chemical about CAS: 16681-65-5, name is 1-Methyl-1H-1,2,3-triazole, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

General procedure: Intermediate 29: step b (2,6-dimethylpyridin-4-yl)(1-methyl-1H-1,2,3-triazol-5-yl)methanone A solution of n-BuLi (3.8 mL, 9.5 mmol, 2.5 M solution in hexane) was added slowly to a solution of 1 -methyl- l H-1, 2 ,3-triazole (0.83 g, 10 mmol) in THF (48 mL) at -50 C. After- addition, stirring was continued for an additonal 30 minutes and N-methoxy-N ,2,6- trimethylisonicotinamide (0.97 g, 5.0 mmol. Intermediate 29: step a) dissolved in THF (12 mL) was slowly added. An additional 2 mL of THF was used to complete the quantitative addition. The mixture was stirred at -50 C for 5 minutes then warmed to room temperature and stirred overnight. The solution was quenched with saturated aqueous NH4C1. H20 was added and layers were separated. The aqueous layer was extracted with EtOAc and the combined organic extracts washed with brine, dried over MgSCu, filtered and evaporated in vacuo. The crude product was purified using flash column chromatography (0 to 100% EtOAc/DCM) to provide the title compound.

By the way, if you are interested in learning more fun chemistry with your kids, get your hands into one chemistry set now, and start enjoying the best part of chemistry: experiments about 1-Methyl-1H-1,2,3-triazole.

Reference:
Patent; JANSSEN PHARMACEUTICA NV; LEONARD, Kristi A.; BARBAY, Kent; EDWARDS, James P.; KREUTTER, Kevin D.; KUMMER, David A.; MAHAROOF, Umar; NISHIMURA, Rachel; URBANSKI, Maud; VENKATESAN, Hariharan; WANG, Aihua; WOLIN, Ronald L.; WOODS, Craig R.; FOURIE, Anne; XUE, Xiaohua; CUMMINGS, Maxwell D.; JONES, William Moore; GOLDBERG, Steven; WO2015/57205; (2015); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Brief introduction of 16681-65-5

If you are hungry for even more, make sure to check my other article about 16681-65-5, the application of this compound in the production field has become more and more popular.

New discoveries in chemical research and development in 2021. The dynamic chemical diversity of the numerous elements, ions and molecules that constitute the basis of life provides wide challenges and opportunities for research. 16681-65-5, name is 1-Methyl-1H-1,2,3-triazole belongs to triazoles compound, it is a common compound, a new synthetic route is introduced below. Computed Properties of C3H5N3

To a flask containing 1-methyl-1H-1,2,3-triazole (160 mg, 1.93 mmol) was added THF (12 mL) and the colorless solution was cooled to -43 C. using a CH3CN-CO2 bath. Then, n-BuLi, (2.5 M in hexanes, 0.72 mL, 1.8 mmol) was added which afforded an opaque white suspension. The suspension was stirred at -40 C. for 20 minutes, then a homogeneous solution of (2-chloro-4-methoxy-3-(2,2,2-trifluoroethyl)quinolin-6-yl)(1,2-dimethyl-1H-imidazol-5-yl)methanone (350 mg, 0.88 mmol, Intermediate 59: step c) in 5 mL THF, was introduced at -40 C. The reaction mixture was allowed to warm gradually to 0 C. over 25 minutes, then quenched with aqueous NH4Cl solution. The aqueous portion was extracted with EtOAc (3*35 mL). The combined organics were washed with brine, dried over Na2SO4 and MgSO4, filtered and concentrated to give a brown solid. Chromatography on silica gel (3% MeOH-DCM increasing to 10% MeOH) provided the title compound as a tan amorphous solid. 1H NMR (500 MHz, CD3OD) delta ppm 8.22 (d, J=1.8 Hz, 1H), 8.05 (d, J=8.9 Hz, 1H), 7.70 (dd, J=8.9, 2.0 Hz, 1H), 7.48 (s, 1H), 6.91 (s, 1H), 4.09 (s, 3H), 4.03-3.89 (m, 5H), 3.69 (s, 3H), 2.66 (s, 3H). MS (ESI): mass calcd. for C21H20ClF3N6O2, 480.1. found, 481.1 (M+H)+.

If you are hungry for even more, make sure to check my other article about 16681-65-5, the application of this compound in the production field has become more and more popular.

Reference:
Patent; JOHNSON & JOHNSON; LEONARD, KRISTI A.; BARBAY, KENT; EDWARDS, JAMES P.; KREUTTER, KEVIN D.; KUMMER, DAVID A.; MAHAROOF, UMAR; NISHIMURA, RACHEL; URBANSKI, MAUD; VENKATESAN, HARIHARAN; WANG, AIHUA; WOLIN, RONALD L.; WOODS, CRAIG R.; FOURIE, ANNE; XUE, XIAOHUA; CUMMINGS, MAXWELL D.; MCCLURE, KELLY; TANIS, VIRGINIA; US2015/111870; (2015); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics