Extended knowledge of 16681-65-5

The synthetic route of 1-Methyl-1H-1,2,3-triazole has been constantly updated, and we look forward to future research findings.

Reference of 16681-65-5, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 16681-65-5, name is 1-Methyl-1H-1,2,3-triazole belongs to Triazoles compound, it is a common compound, a new synthetic route is introduced below.

1-Methyl-1H-1,2,3-triazole was prepared according to the literature reference WO2008/98104. To a 2 L flask containing 1-methyl-1H-1,2,3-triazole (9 g, 108.3 mmol) was added THF (1500 mL) and the solution was cooled to -40 C. To this colorless homogeneous solution was added n-butyllithium (2.5 M in hexanes, 45 mL, 112.5 mmol) dropwise which immediately afforded a dark brown viscous mixture. The mixture was kept between -10 to -20 C. for 60 minutes, then a THF solution of 2,4-dimethylthiazole-5-carbaldehyde (17.2 g, 121.8 mmol in 200 mL THF) was introduced via cannula. Once the aldehyde was added the reaction was allowed to warm to room temperature. After 3 hours, the reaction was quenched by pouring it into a saturated solution of aqueous NH4Cl. The aqueous portion was extracted with EtOAc in portions, 7*400 mL. The combined organics were washed with brine, dried over MgSO4, filtered and concentrated to dryness to give a brown oil. Chromatography on silica gel (10% acetone-DCM increasing to 50% acetone and increasing to 10% MeOH-DCM) provided the title compound as an amber solid.

The synthetic route of 1-Methyl-1H-1,2,3-triazole has been constantly updated, and we look forward to future research findings.

Reference:
Patent; JOHNSON & JOHNSON; LEONARD, KRISTI A.; BARBAY, KENT; EDWARDS, JAMES P.; KREUTTER, KEVIN D.; KUMMER, DAVID A.; MAHAROOF, UMAR; NISHIMURA, RACHEL; URBANSKI, MAUD; VENKATESAN, HARIHARAN; WANG, AIHUA; WOLIN, RONALD L.; WOODS, CRAIG R.; FOURIE, ANNE; XUE, XIAOHUA; CUMMINGS, MAXWELL D.; MCCLURE, KELLY; TANIS, VIRGINIA; US2015/111870; (2015); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Some scientific research about 16681-65-5

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles, 1-Methyl-1H-1,2,3-triazole, other downstream synthetic routes, hurry up and to see.

Related Products of 16681-65-5, The chemical industry reduces the impact on the environment during synthesis 16681-65-5, name is 1-Methyl-1H-1,2,3-triazole, I believe this compound will play a more active role in future production and life.

1-Methyl-1H-1,2,3-triazole was prepared according to the literature reference WO2008/98104. To a 2 L flask containing 1-methyl-1H-1,2,3-triazole (9 g, 108.3 mmol) was added THF (1500 mL) and the solution was cooled to -40 C. To this colorless homogeneous solution was added n-butyllithium (2.5 M in hexanes, 45 mL, 112.5 mmol) dropwise which immediately afforded a dark brown viscous mixture. The mixture was kept between -10 to -20 C. for 60 minutes, then a THF solution of 2,4-dimethylthiazole-5-carbaldehyde (17.2 g, 121.8 mmol in 200 mL THF) was introduced via cannula. Once the aldehyde was added the reaction was allowed to warm to room temperature. After 3 hours, the reaction was quenched by pouring into a saturated solution of aqueous NH4Cl. The aqueous portion was extracted with EtOAc in portions, 7*400 mL. The combined organics were washed with brine, dried over MgSO4, filtered and concentrated to give a brown oil. Chromatography on silica gel (10% acetone-DCM increasing to 50% acetone and increasing to 10% MeOH-DCM) provided the title compound as an amber solid.

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles, 1-Methyl-1H-1,2,3-triazole, other downstream synthetic routes, hurry up and to see.

Reference:
Patent; Janssen Pharmaceutica NV; Leonard, Kristi A.; Barbay, Kent; Edwards, James P.; Kreutter, Kevin D.; Kummer, David A.; Maharoof, Umar; Nishimura, Rachel; Urbanski, Maud; Venkatesan, Hariharan; Wang, Aihua; Wolin, Ronald L.; Woods, Craig R.; Fourie, Anne; Xue, Xiaohua; Cummings, Maxwell D.; Jones, William Moore; Goldberg, Steven; US2015/105366; (2015); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Extended knowledge of 16681-65-5

According to the analysis of related databases, 16681-65-5, the application of this compound in the production field has become more and more popular.

In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product. An updated downstream synthesis route of 16681-65-5 as follows. name: 1-Methyl-1H-1,2,3-triazole

To a flask containing 1-methyl-1H-1,2,3-triazole (200 mg, 2.41 mmol, prepared according to PCT Int. Appl., 2008098104) was added THF (20 mL) and the colorless solution was cooled to -40 C. Then, n-BuLi (2.5 M in hexanes, 1.0 mL, 2.5 mmol) was added drop wise which afforded a dark reddish-brown viscous solution. The mixture was stirred at -30 C. for 35 minutes, then a homogeneous THF solution of (4-chloro-2-methoxy-3-(4-(trifluoromethyl)benzyl)quinolin-6-yl)(2,4-dimethyloxazol-5-yl)methanone (500 mg, 1.05 mmol, in 4 mL THF, Intermediate 51: step b) was introduced at -20 C. The reaction mixture became a dark brown color and was then placed in an ice-water bath and allowed to warm gradually to room temperature. After 45 minutes, the mixture was quenched with aqueous NH4Cl solution and extracted with EtOAc:THF (10:2), 4*50 mL. The combined organics were washed with brine, dried over Na2SO4, filtered and concentrated to provide a brown oil. Chromatography on silica gel (3% MeOH-DCM increasing to 5% MeOH-DCM) to provide the title compound as a faint amber solid. MS m/e 558.2 [M+H]+. 1H NMR (400 MHz, CDCl3) delta ppm 8.15 (d, J=2.0 Hz, 1H), 7.86 (d, J=8.8 Hz, 1H), 7.54-7.47 (m, 3H), 7.40 (d, J=8.1 Hz, 2H), 7.14 (s, 1H), 4.35 (s, 2H), 4.10 (s, 3H), 4.03 (s, 1H), 3.92 (s, 3H), 2.40 (s, 3H), 1.54 (s, 3H).

According to the analysis of related databases, 16681-65-5, the application of this compound in the production field has become more and more popular.

Reference:
Patent; Janssen Pharmaceutica NV; Leonard, Kristi A.; Barbay, Kent; Edwards, James P.; Kreutter, Kevin D.; Kummer, David A.; Maharoof, Umar; Nishimura, Rachel; Urbanski, Maud; Venkatesan, Hariharan; Wang, Aihua; Wolin, Ronald L.; Woods, Craig R.; Pierce, Joan; Goldberg, Steven; Fourie, Anne; Xue, Xiaohua; US2014/107094; (2014); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Application of 16681-65-5

The synthetic route of 16681-65-5 has been constantly updated, and we look forward to future research findings.

Synthetic Route of 16681-65-5,Some common heterocyclic compound, 16681-65-5, name is 1-Methyl-1H-1,2,3-triazole, molecular formula is C3H5N3, traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

A solution of 1-methyl-1H-1,2,3-triazole (12.9 g, 155 mmol) in THF (260 mL) was cooled to -45 C. Maintaining a temperature of <-35 C., n-BuLi (62.1 mL, 2.5 M in hexanes, 155 mmol) was added over 10 minutes. The reaction mixture was stirred for 30 minutes with cooling to -45 C. and then treated with a sub-surface stream of CO2(g) for a period of 2 hours. After flushing the -35 C. slurry with N2(g) for 5 minutes, thionyl chloride (11.8 mL, 163 mmol) was added. The mixture was allowed to warm to room temperature with stirring over 1.25 hours. Then, N,O-dimethylhydroxylamine hydrochloride (18.14 g, 186 mmol) and N,N-diisopropylethylamine (68.3 mL, 396 mmol) were added and the resulting mixture stirred for 15 hours. Aqueous sodium carbonate (500 mL, 10 wt %) was then added, and the layers were mixed and separated. The aqueous layer was washed with dichloromethane (250 mL and then 125 mL), and the combined organic layers were dried over MgSO4, filtered, and concentrated. The residue was taken up in ethyl acetate (225 mL), treated with MgSO4, and filtered through a pad of silica gel (115 g). The silica gel pad was washed with additional ethyl acetate (800 mL). The eluent was concentrated to provide the title compound as a yellow solid. The synthetic route of 16681-65-5 has been constantly updated, and we look forward to future research findings. Reference:
Patent; Janssen Pharmaceutica NV; Leonard, Kristi A.; Barbay, Kent; Edwards, James P.; Kreutter, Kevin D.; Kummer, David A.; Maharoof, Umar; Nishimura, Rachel; Urbanski, Maud; Venkatesan, Hariharan; Wang, Aihua; Wolin, Ronald L.; Woods, Craig R.; Fourie, Anne; Xue, Xiaohua; Cummings, Maxwell D.; Jones, William Moore; Goldberg, Steven; US2015/105366; (2015); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Some scientific research about 16681-65-5

The synthetic route of 16681-65-5 has been constantly updated, and we look forward to future research findings.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 16681-65-5, name is 1-Methyl-1H-1,2,3-triazole belongs to Triazoles compound, it is a common compound, a new synthetic route is introduced below. Computed Properties of C3H5N3

Example 43a: (4-chloro-2-methoxy-3-((6-(trifluoromethyl)pyridin-3-yl)methyl)quinolin-6-yl)(1,2-dimethyl-1H-imidazol-5-yl)(1-methyl-1H-1,2,3-triazol-5-yl)methanol A solution of n-BuLi (2.5 M in hexanes, 1.25 mL, 3.12 mmol) was added dropwise by syringe to a solution of 1 -methyl- 1 H- 1 ,2,3-triazole (268 mg, 3.22 mmol) in dry THF (32 mL) in a dry ice- methanol bath. The suspension was stirred for 30 minutes, slowly allowing the reaction mixture to warm to -10 C, (4-Chloro-2-methoxy-3-((6-(trifluoromethyl)pyTidin-3-yl)methyl)quinoiin-6- yi)(l ,2-dimethyl-lH-imida.zol-5-yl)methanone (0.500 g, 1 ,05 mmol, Intermediate 45: step f) in dry THF (5 mL) was added to the mixture via syringe and the resulting mixture was allowed to warm to ambient temperature overnight. The reaction was quenched with water. Brine was added and the aqueous mixture was extracted with ethyl acetate. The combined organic layers were dried (Na2S04), filtered, and concentrated. The crude product was purified by flash column chromatography (silica gel, 0-8% MeOH-DCM) to provide the title compound.JH NMR (500MHz, CDC1 delta 8.69 (d, J = 1.7 Hz, 1H), 8.24 (d, J = 1.9 Hz, 1H), 8.22 (s, IH), 7.79 – 7.76 (m, 1H), 7.75 (d, J = 8.7 Hz, 1H), 7.57 (d, J = 8.1 Hz, 1H), 7.42 (dd, J = 8.7, 2.0 Hz, 1H), 6.97 (s, 1H), 5.95 (s, 1H), 4.30 (s, 2H), 4.08 (s, 3H), 3.88 (s, 3H), 3.33 (s, 3H), 2.12 (s, 3H); MS m/e 557.8 [M+H]+.Example 43a was purified by ehiral SFC (ChiralPak AD-H, 70:30 C02:mixture of MeOH/iPrOH (50:50 with 0.3% /PrNH2)) to provide two pure enantiomers. The first eluting enantiomer was Example 43b: 1H NMR (400 MHz, CDC13) delta 8.72 (d, J = 1 .7 Hz, 1H), 8.21 (d, J = 2.1 Hz, 1H), 7.78 (dd, J —— 8.1 , 1 .7 Hz, I I I). 7.74 (d, J —— 8.7 Hz, 1 H), 7.58 id, J = 7.9 Hz,I I I). 7.40 (dd, J —– 8.7, 2,2 Hz, i l l). 7.50 (s, I H), 6.04 (s, 1H), 4.34 (s, 2H), 4.08 (s, M i l 3.89 (s,3H), 3.36 (s, 3H), 2.24 (s, 3H); MS m/e 557.2 [MJ+. The second eluting enantiomer was Example 43c: H NMR (400 MHz, CDC13) delta 8.73 (d, J = 1.8 Hz, 5 H), 8.20 (d, J === 2.0 Hz, 1H), 7.80 – 7.73 (m, 2H), 7.58 (d, J = 8.0 Hz, 1 H), 7.40 (dd, J = 8.7, 2.1 Hz, 1H), 7.52 (s, IH), 6.06 (s, IH), 4.35 (s, 21 1). 4.08 (s, 3H), 3.90 (s, 3H), 3.37 (s, 3H), 2.26 (s, 3H); MS m/e 557.2 i VI i

The synthetic route of 16681-65-5 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; JANSSEN PHARMACEUTICA NV; LEONARD, Kristi A.; BARBAY, Kent; EDWARDS, James P.; KREUTTER, Kevin D.; KUMMER, David A.; MAHAROOF, Umar; NISHIMURA, Rachel; URBANSKI, Maud; VENKATESAN, Hariharan; WANG, Aihua; WOLIN, Ronald L.; WOODS, Craig R.; FOURIE, Anne; XUE, Xiaohua; CUMMINGS, Maxwell D.; JONES, William Moore; GOLDBERG, Steven; WO2015/57205; (2015); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

A new synthetic route of 16681-65-5

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 16681-65-5.

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 16681-65-5, name is 1-Methyl-1H-1,2,3-triazole, This compound has unique chemical properties. The synthetic route is as follows., Recommanded Product: 1-Methyl-1H-1,2,3-triazole

The title compound was prepared according to No. WO2008 / 135826 International Patent Application Publication. In 1-methyl -1H-1,2,3- triazole (1.0g, 12.0 mmol, prepared according to International Patent Application No. 2008098104) 50 mL 2-neck flask containing, by the addition of THF (45 mL) , colorless solution was cooled to -40 . Then, by adding dropwise the (2.5 M, 4.8 mL, 12.0 mmol in hexane) n-BuLi, to give a dark reddish brown viscous solution. The mixture was stirred for 45 minutes at -30 to -20 in the following, was introduced into a pure DMF (3mL, 38.5 mmol) at -10 . The mixture was allowed to warm to room temperature, after stirring for 60 minutes, poured into water. Extract the aqueous portion with EtOAc (4 ¡Á 50 mL), the combined organics washed with brine, dried with MgSO4, filtered, and concentrated. The aqueous portion was extracted with DCM (3 ¡Á 50 mL) station, and dried as described above. The combined organics were concentrated to give a light brown oil The UV activity much higher than the starting material. DCM-25% CH3CN, according to TLC or of from 25% EtOAc-DCM, showed the product has a slightly higher Rf than the starting material. (With 100% DCM, 25% CH3CN-DCM increased) by silica gel chromatography on to give the title compound as a colorless oil.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 16681-65-5.

Reference:
Patent; Janssen Pharmaceuticals N.V; Leonardo, Christi.A.; Barvei, Kent; Edward, James P.; Gloita, Kevin D.; Kummer, David .A.; Maharoof, Umar; Nishimura, Rachael; Urbanski, Mode; Venkatesan, Hariharan; Wang, Ai Hua; Olin, Ronald L.; Woods, Craig; Fourier, Anne; Shu, Jih; Cumings, Maxwell D.; (86 pag.)KR2016/68948; (2016); A;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

The origin of a common compound about 16681-65-5

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles, 1-Methyl-1H-1,2,3-triazole, other downstream synthetic routes, hurry up and to see.

Application of 16681-65-5, The chemical industry reduces the impact on the environment during synthesis 16681-65-5, name is 1-Methyl-1H-1,2,3-triazole, I believe this compound will play a more active role in future production and life.

Intermediate 84 (4-chloro-2-methoxy-3-(4-(trifluoromethyl)benzyl)quinolin-6-yl)(2,6-dimethylpyridin-3-yl)(1-methyl-1H-1,2,3-triazol-5-yl)methanol To a flask containing 1 -methyl- lH-l ,2,3-triazole (275 mg, 3.31 mmol, prepared according to PCX Int. Appl., 2008098104) was added THF (35 mL) and the colorless solution was cooled to – 50 C. Then, kappa-butyllithium (2.5 M in hexanes, 1 ,2 mL, 3.0 mmol) was added dropwise which afforded a dark reddish-brown viscous solution. The mixture was stirred between -20 to -10 C for 30 minutes, then a homogeneous THF solution of (4-chloro-2-methoxy-3-(4- (irifluQromethyl)benzy)quinoh (700 nig, 1.44 mmol in 4 mL THF, Intermediate 12: step f) was introduced at 0 C. The reaction mixture became a dark brown color and was allowed to warm gradually to room temperature. The mixture was stirred for 60 minutes at, room, temperature then quenched with aqueous NH4CI solution. The aqueous portion was extracted with EtOAc, 3 x 50 mL. The combined organics were washed with brine, dried over MgS04, filtered and concentrated to provide a brown oil. Chromatography on silica gel (1% MeOH-DCM increasing to 5% MeOH-DCM) provided the title compound as a light brown solid. Racemic (4~chloro-2-methoxy-3-(4~(trifluorometliyl)benzyl)quinohyl)rnethanol was separated into its individual enantiomers using the following conditions: Chiralcel OD, 20 uM (Diacel) using ethanol with 242 nM detection to give the first eluting enantiomer as Intermediate 84b and the second eluting enantiomer as Intermediate 84c.

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles, 1-Methyl-1H-1,2,3-triazole, other downstream synthetic routes, hurry up and to see.

Reference:
Patent; JANSSEN PHARMACEUTICA NV; LEONARD, Kristi A.; BARBAY, Kent; EDWARDS, James P.; KREUTTER, Kevin D.; KUMMER, David A.; MAHAROOF, Umar; NISHIMURA, Rachel; URBANSKI, Maud; VENKATESAN, Hariharan; WANG, Aihua; WOLIN, Ronald L.; WOODS, Craig R.; FOURIE, Anne; XUE, Xiaohua; CUMMINGS, Maxwell D.; JONES, William Moore; GOLDBERG, Steven; WO2015/57205; (2015); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Analyzing the synthesis route of 16681-65-5

Statistics shows that 1-Methyl-1H-1,2,3-triazole is playing an increasingly important role. we look forward to future research findings about 16681-65-5.

Reference of 16681-65-5, These common heterocyclic compound, 16681-65-5, name is 1-Methyl-1H-1,2,3-triazole, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

a 3-Methyl-3 H-1,2,3-triazole-4-carboxaldehyde To a stirred solution of 1-methyl-1 H-1,2,3-triazole (0.500 g, 6.02 mmol) in anhydrous THF (20 ml), cooled to -70 C. under nitrogen, was added dropwise a 1.6 M solution of butyl lithium in hexanes (4.23 ml, 6.77 mmol). The mixture was stirred at this temperature for 1 h, then anhydrous DMF (0.465 ml, 6.02 mmol) was added, and the mixture was allowed to warm to 0 C. over 30 min. Saturated aqueous NH4Cl (25 ml) was then added and the mixture was extracted with ethyl acetate. The organic layer was dried (Na2SO4) and evaporated in vacuo. The residue was purified by flash chromatography (silica gel, 40% EtOAc/hexane) to give 0.128 g (19%) of the title compound as a yellow oil: 1H NMR (360 MHz, d6-DMSO) delta4.27 (3 H, s), 8.45 (1 H, s), 10.01 (1 H, s); MS (ES+) m/e 144[M+MeOH+H]+, 111[M]+.

Statistics shows that 1-Methyl-1H-1,2,3-triazole is playing an increasingly important role. we look forward to future research findings about 16681-65-5.

Reference:
Patent; Merck Sharp & Dohme Limited; US6255305; (2001); B1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Share a compound : 16681-65-5

The synthetic route of 16681-65-5 has been constantly updated, and we look forward to future research findings.

Application of 16681-65-5, A common heterocyclic compound, 16681-65-5, name is 1-Methyl-1H-1,2,3-triazole, molecular formula is C3H5N3, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

A 2.5 M solution of n-butyllithium in hexanes (9.60 mL, 24.0 mmol) was added dropwise to a stirring solution of 1-methyl-1H-1,2,3-triazole (2.00 g, 24.0 mmol, prepared according to PCT Int. Appl., 2008098104) in dry THF (100 mL) at -50 C. The reaction became heterogeneous and yellow during addition. After 15 min, a solution of tert-butyl 3-formylazetidine-1-carboxylate (4.45 g, 24.0 mmol) in dry THF (10 mL) was added dropwise by syringe. The reaction mixture became homogeneous and was allowed to slowly warm to 0 C. Water (10 mL) and ethyl acetate (100) mL were added. The biphasic mixture was warmed to 23 C. The mixture was partitioned between half-saturated aqueous sodium chloride solution (100 mL) and ethyl acetate (300 mL). The layers were separated. The organic layer was dried with sodium sulfate and the dried solution was filtered. Celite (14 g) was added to the filtrate and the solvents were removed by rotary evaporation to provide a free-flowing powder. The powder was loaded onto a silica gel column. Elution with ethyl acetate initially, grading to 5% methanol-ethyl acetate provided the title compound as a white foam.

The synthetic route of 16681-65-5 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; Janssen Pharmaceutica NV; Leonard, Kristi A.; Barbay, Kent; Edwards, James P.; Kreutter, Kevin D.; Kummer, David A.; Maharoof, Umar; Nishimura, Rachel; Urbanski, Maud; Venkatesan, Hariharan; Wang, Aihua; Wolin, Ronald L.; Woods, Craig R.; Pierce, Joan; Goldberg, Steven; Fourie, Anne; Xue, Xiaohua; US2014/107094; (2014); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Research on new synthetic routes about 16681-65-5

According to the analysis of related databases, 16681-65-5, the application of this compound in the production field has become more and more popular.

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 16681-65-5, name is 1-Methyl-1H-1,2,3-triazole, This compound has unique chemical properties. The synthetic route is as follows., Application In Synthesis of 1-Methyl-1H-1,2,3-triazole

To a flask containing 1-methyl-1H-1,2,3-triazole (275 mg, 3.31 mmol, prepared according to PCT Int. Appl., 2008098104) was added THF (35 mL) and the colorless solution was cooled to -50 C. Then, n-butyllithium (2.5 M in hexanes, 1.2 mL, 3.0 mmol) was added dropwise which afforded a dark reddish-brown viscous solution. The mixture was stirred between -20 to -10 C. for 30 minutes, then a homogeneous THF solution of (4-chloro-2-methoxy-3-(4-(trifluoromethyl)benzyl)quinolin-6-yl)(2,6-dimethylpyridin-3-yl)methanone (700 mg, 1.44 mmol in 4 mL THF, Intermediate 12: step f) was introduced at 0 C. The reaction mixture became a dark brown color and was allowed to warm gradually to room temperature. The mixture was stirred for 60 minutes at room temperature then quenched with aqueous NH4Cl solution. The aqueous portion was extracted with EtOAc, 3*50 mL. The combined organics were washed with brine, dried over MgSO4, filtered and concentrated to provide a brown oil. Chromatography on silica gel (1% MeOH-DCM increasing to 5% MeOH-DCM) provided the title compound as a light brown solid. Racemic (4-chloro-2-methoxy-3-(4-(trifluoromethyl)benzyl)quinolin-6-yl)(2,6-dimethylpyridin-3-yl)(1-methyl-1H-1,2,3-triazol-5-yl)methanol was separated into its individual enantiomers using the following conditions: Chiralcel OD, 20 uM (Diacel) using ethanol with 242 nM detection to give the first eluting enantiomer as Intermediate 84b and the second eluting enantiomer as Intermediate 84c.

According to the analysis of related databases, 16681-65-5, the application of this compound in the production field has become more and more popular.

Reference:
Patent; Janssen Pharmaceutica NV; Leonard, Kristi A.; Barbay, Kent; Edwards, James P.; Kreutter, Kevin D.; Kummer, David A.; Maharoof, Umar; Nishimura, Rachel; Urbanski, Maud; Venkatesan, Hariharan; Wang, Aihua; Wolin, Ronald L.; Woods, Craig R.; Fourie, Anne; Xue, Xiaohua; Cummings, Maxwell D.; Jones, William Moore; Goldberg, Steven; US2015/105366; (2015); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics