Brief introduction of 16681-65-5

Statistics shows that 1-Methyl-1H-1,2,3-triazole is playing an increasingly important role. we look forward to future research findings about 16681-65-5.

Synthetic Route of 16681-65-5, These common heterocyclic compound, 16681-65-5, name is 1-Methyl-1H-1,2,3-triazole, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

The title compound was prepared according to the patent application WO2008/135826. To a 50 mL 2-necked flask containing 1-methyl-1H-1,2,3-triazole (1.0 g, 12.0 mmol, prepared according to PCT Int. Appl., 2008098104) was added THF (45 mL) and the colorless solution was cooled to -40 C. Then, n-BuLi (2.5 M in hexanes, 4.8 mL, 12.0 mmol) was added dropwise which afforded a dark reddish-brown viscous solution. The mixture was stirred between -30 to -20 C. for 45 minutes, then neat DMF (3 mL, 38.5 mmol) was introduced at -10 C. The mixture was allowed to warm up to room temperature and stirred for 60 minutes, followed by pouring into water. The aqueous portion was extracted with EtOAc (4*50 mL) and the combined organics were washed with brine, dried over MgSO4, filtered and concentrated. The aqueous portion was back-extracted with DCM (3*50 mL) and dried as above. The combined organics were concentrated to give a light brown oil that was much more UV active than the starting material. TLC in either 25% CH3CN-DCM or 25% EtOAc-DCM showed the product to have a slightly higher Rf than the starting material. Chromatography on silica gel (100% DCM increasing to 25% CH3CN-DCM) provided the title compound as a colorless oil.

Statistics shows that 1-Methyl-1H-1,2,3-triazole is playing an increasingly important role. we look forward to future research findings about 16681-65-5.

Reference:
Patent; JANSSEN PHARMACEUTICA NV; LEONARD, KRISTI A.; BARBAY, KENT; EDWARDS, JAMES P.; KREUTTER, KEVIN D.; KUMMER, DAVID A.; MAHAROOF, UMAR; NISHIMURA, RACHEL; URBANSKI, MAUD; VENKATESAN, HARIHARAN; WANG, AIHUA; WOLIN, RONALD L.; WOODS, CRAIG R.; FOURIE, ANNE; XUE, XIAOHUA; CUMMINGS, MAXWELL D.; US2015/105372; (2015); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

New downstream synthetic route of 16681-65-5

The synthetic route of 1-Methyl-1H-1,2,3-triazole has been constantly updated, and we look forward to future research findings.

These common heterocyclic compound, 16681-65-5, name is 1-Methyl-1H-1,2,3-triazole, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route. category: Triazoles

To a flask containing 1-methyl-1H-1,2,3-triazole (430 mg, 0.8 mmol) was added THF (15 mL) and the solution was cooled to -43 C. using a CH3CN-CO2 bath. Then, n-BuLi, (2.5 M in hexanes, 0.7 mL, 1.75 mmol) was added dropwise. The reaction mixture was stirred at -40 C. for 30 minutes, then tert-butyl-3-(4-chloro-2-methoxy-3-(4-(trifluoromethyl)benzyl)quinoline-6-carbonyl)-azetidine-1-carboxylate (430 mg, 0.8 mmol, Intermediate 61: step b) in 2 mL THF was introduced. The reaction mixture was allowed to warm to room temperature over 30 minutes, and was quenched after 45 minutes with aqueous NH4Cl solution. The aqueous portion was extracted with EtOAc (3*30 mL). The combined organics were washed with brine, dried over MgSO4, filtered and concentrated. Chromatography on Silica gel (10% acetone-hexane increasing to 30% acetone) afforded the title compound as a white amorphous solid. 1H NMR (500 MHz, CDCl3) delta 8.24 (d, J=2.1 Hz, 1H), 7.78 (d, J=8.8 Hz, 1H), 7.56-7.47 (m, 3H), 7.40 (d, J=8.1 Hz, 2H), 7.35 (dd, J=8.7, 2.1 Hz, 1H), 4.35 (s, 2H), 4.20 (t, J=8.8 Hz, 1H), 4.07 (s, 3H), 4.00 (dd, J=9.3, 5.6 Hz, 1H), 3.92 (dd, J=8.9, 5.7 Hz, 1H), 3.67 (s, 3H), 3.62 (t, J=8.8 Hz, 1H), 3.52-3.38 (m, 1H), 1.38 (s, 9H); MS (ESI): mass calcd: Chemical Formula: C30H31ClF3N5O4; Exact Mass: 617.2. m/z found 617.8 [M+H]+.

The synthetic route of 1-Methyl-1H-1,2,3-triazole has been constantly updated, and we look forward to future research findings.

Reference:
Patent; Janssen Pharmaceutica NV; Leonard, Kristi A.; Barbay, Kent; Edwards, James P.; Kreutter, Kevin D.; Kummer, David A.; Maharoof, Umar; Nishimura, Rachel; Urbanski, Maud; Venkatesan, Hariharan; Wang, Aihua; Wolin, Ronald L.; Woods, Craig R.; Fourie, Anne; Xue, Xiaohua; Cummings, Maxwell D.; Jones, William Moore; Goldberg, Steven; US2015/105366; (2015); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Application of 16681-65-5

The synthetic route of 16681-65-5 has been constantly updated, and we look forward to future research findings.

Application of 16681-65-5,Some common heterocyclic compound, 16681-65-5, name is 1-Methyl-1H-1,2,3-triazole, molecular formula is C3H5N3, traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

The title compound was prepared according to the patent application WO2008/135826. To a 50 mL 2-necked flask containing 1-methyl-1H-1,2,3-triazole (1.0 g, 12.0 mmol, prepared according to PCT Int. Appl., 2008098104) was added THF (45 mL) and the colorless solution was cooled to -40 C. Then, n-BuLi (2.5 M in hexanes, 4.8 mL) was added dropwise which afforded a dark reddish-brown viscous solution. The mixture was stirred between -30 to -20 C. for 45 minutes, then neat DMF (3 mL, 38.5 mmol) was introduced at -10 C. The mixture was allowed to warm up to room temperature and stirred for 60 minutes, followed by pouring into water. The aqueous portion was extracted with EtOAc (4*50 mL) and the combined organics were washed with brine, dried over MgSO4, filtered and concentrated. The aqueous portion was back-extracted with DCM (3*50 mL) and dried as above. The combined organics were concentrated to give a light brown oil that was much more UV active than the starting material. TLC in either 25% CH3CN-DCM or 25% EtOAc-DCM showed the product to have a slightly higher Rf than the starting material. Chromatography on silica gel (100% DCM increasing to 25% CH3CN-DCM) provided the titled material as a colorless oil.

The synthetic route of 16681-65-5 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; Janssen Pharmaceutica NV; Leonard, Kristi A.; Barbay, Kent; Edwards, James P.; Kreutter, Kevin D.; Kummer, David A.; Maharoof, Umar; Nishimura, Rachel; Urbanski, Maud; Venkatesan, Hariharan; Wang, Aihua; Wolin, Ronald L.; Woods, Craig R.; Pierce, Joan; Goldberg, Steven; Fourie, Anne; Xue, Xiaohua; US2014/107094; (2014); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Some tips on 16681-65-5

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps, and cheap raw materials. 16681-65-5, name is 1-Methyl-1H-1,2,3-triazole, A new synthetic method of this compound is introduced below., Recommanded Product: 16681-65-5

To a flask containing 1-methyl-1H-1,2,3-triazole (160 mg, 1.93 mmol) was added THF (12 mL) and the colorless solution was cooled to -43 C. using a CH3CN-CO2 bath. Then, n-BuLi, (2.5 M in hexanes, 0.72 mL, 1.8 mmol) was added which afforded an opaque white suspension. The suspension was stirred at -40 C. for 20 minutes, then a homogeneous solution of (2-chloro-4-methoxy-3-(2,2,2-trifluoroethyl)quinolin-6-yl)(1,2-dimethyl-1H-imidazol-5-yl)methanone (350 mg, 0.88 mmol, Intermediate 59: step c) in 5 mL THF, was introduced at -40 C. The reaction mixture was allowed to warm gradually to 0 C. over 25 minutes, then quenched with aqueous NH4Cl solution. The aqueous portion was extracted with EtOAc (3*35 mL). The combined organics were washed with brine, dried over Na2SO4 and MgSO4, filtered and concentrated to give a brown solid. Chromatography on silica gel (3% MeOH-DCM increasing to 10% MeOH) provided the title compound as a tan amorphous solid. 1H NMR (500 MHz, CD3OD) delta ppm 8.22 (d, J=1.8 Hz, 1H), 8.05 (d, J=8.9 Hz, 1H), 7.70 (dd, J=8.9, 2.0 Hz, 1H), 7.48 (s, 1H), 6.91 (s, 1H), 4.09 (s, 3H), 4.03-3.89 (m, 5H), 3.69 (s, 3H), 2.66 (s, 3H). MS (ESI): mass calcd. for C21H20ClF3N6O2, 480.1. found, 481.1 (M+H)+.

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Reference:
Patent; JOHNSON & JOHNSON; LEONARD, KRISTI A.; BARBAY, KENT; EDWARDS, JAMES P.; KREUTTER, KEVIN D.; KUMMER, DAVID A.; MAHAROOF, UMAR; NISHIMURA, RACHEL; URBANSKI, MAUD; VENKATESAN, HARIHARAN; WANG, AIHUA; WOLIN, RONALD L.; WOODS, CRAIG R.; FOURIE, ANNE; XUE, XIAOHUA; CUMMINGS, MAXWELL D.; MCCLURE, KELLY; TANIS, VIRGINIA; US2015/111870; (2015); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Application of 16681-65-5

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it.

Adding a certain compound to certain chemical reactions, such as: 16681-65-5, name is 1-Methyl-1H-1,2,3-triazole, belongs to Triazoles compound, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 16681-65-5, category: Triazoles

Step B: To a solution of l-methyl-lH-l,2,3-triazole (860 mg, 10.4 mmol) in THF (10 mL) at -78 C, was added dropwise n-BuLi (5.0 mL, 12.4 mmol, 2.5 M). The mixture was stirred at -78 C for 2 hours before addition of BusSnCl (3.7 g, 11.4 mmol). The mixture was stirred at -78 C for 1 hour and then room temperature for 1 hour. The mixture was concentrated under vacuum and hexane was added. The insoluble material was filtered and the filtrate was concentrated under vacuum to afford l-methyl-5-(tributylstannyl)-lH-l,2,3-triazole (3.1 g, 80 %) as yellow oil which was used directly in the next step.

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it.

Reference:
Patent; GENENTECH, INC.; F. HOFFMANN-LA ROCHE AG; YUK, Inn H.; PURKEY, Hans; O’BRIEN, Thomas; WO2015/142903; (2015); A2;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

New learning discoveries about 16681-65-5

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles, 1-Methyl-1H-1,2,3-triazole, other downstream synthetic routes, hurry up and to see.

Electric Literature of 16681-65-5, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 16681-65-5, name is 1-Methyl-1H-1,2,3-triazole belongs to Triazoles compound, it is a common compound, a new synthetic route is introduced below.

To a solution of 1-methyl-1 H-1 ,2,3-triazole (Preparation 32, 0.1 g, 1.2 mmol) in tetrahydrofuran (THF, 10 ml) at -780C was added dropwise 1.6 M n-butyl lithium (0.9 ml, 1.4 mmol), maintaining the temperature below -6O0C. The reaction was stirred at – 780C for 30 minutes, then dimethylformamide (0.14 ml, 1.8 mmol) was added. The reaction was warmed to room temperature and stirred for 1 hour. The reaction was quenched with water and extracted with ethyl acetate (3 x 10 ml). The combined organic extracts were washed with water (3 x 10 ml), dried over MgSO4 and concentrated in vacuo. The residue was purified by silica gel column chromatography, eluting with 95:5 to 100:0 dichloromethane:methanol, to afford the title compound as a yellow oil (0.04 g, 30% yield).1HNMR (CDCI3): 4.10 (s, 3H)1 7.88 (s, 1 H), 9.55 (s, 1 H)

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles, 1-Methyl-1H-1,2,3-triazole, other downstream synthetic routes, hurry up and to see.

Reference:
Patent; PFIZER LIMITED; WO2008/135826; (2008); A2;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Analyzing the synthesis route of 16681-65-5

The synthetic route of 16681-65-5 has been constantly updated, and we look forward to future research findings.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps, and cheap raw materials. 16681-65-5, name is 1-Methyl-1H-1,2,3-triazole, A new synthetic method of this compound is introduced below., Product Details of 16681-65-5

n-BuLi (1.23 M in hexanes, 1.1 mL, 1.35 mmol) was added dropwise to a stirred slurry of 1-methyl-1,2,3-triazole (112 mg, 1.35 mmol) in THF (1 mL) at -40 C. under nitrogen. After stirring for another 30 minutes, the mixture was treated dropwise with a solution of (4-chloro-3-isopropoxy-2-methoxyquinolin-6-yl)(1,2-dimethyl-1H-imidazol-5-yl)methanone (252 mg, 0.67 mmol, Intermediate 27) in THF (5 mL). The reaction was allowed to warm to room temperature over 1 hour. The reaction was then quenched with saturated aqueous NH4Cl. The mixture was poured into a separatory funnel and extracted with DCM (4*60 mL). The organics were combined, washed with brine, dried (Na2SO4), filtered and concentrated to dryness to afford a light yellow oil. The crude material was purified by FCC (1-7.5% MeOH/DCM) followed by reverse-phase HPLC (acetonitrile/water+NH4OH) to provide the title compound as a white solid. 1H NMR (400 MHz, CDCl3) delta ppm 8.08 (d, J=2.2 Hz, 1H), 7.78 (d, J=8.7 Hz, 1H), 7.33 (dd, J=8.6, 2.2 Hz, 1H), 7.18 (s, 1H), 6.18 (s, 1H), 4.74-4.67 (m, 1H), 4.32 (s, 1H), 4.13 (s, 3H), 3.94 (s, 3H), 3.39 (s, 3H), 2.32 (s, 3H), 1.39 (d, J=6.2 Hz, 6H). MS (ESI): mass calcd. for C22H25ClN6O3, 456.2. m/z found, 457.0 [M+H]+. [4-Chloro-2-methoxy-3-(1-methylethoxyl)quinolin-6-yl](1,2-dimethyl-1H-imidazol-5-yl)(1-methyl-1H-1,2,3-triazol-5-yl)methanol was purified by chiral SFC (Stationary phase: CHIRALPAK AD-H 5 muM 250*20 mm, Mobile phase: 70% CO2, 30% MeOH/iPrOH 50/50 v/v+(0.3% iPrNH2)) to give 2 enantiomers. The first eluting enantiomer was Example 80b: 1H NMR (400 MHz, CDCl3) delta ppm 8.09 (d, J=2.2 Hz, 1H), 7.77 (d, J=8.7 Hz, 1H), 7.32 (dd, J=8.7, 2.2 Hz, 1H), 7.17 (s, 1H), 6.17 (s, 1H), 4.75-4.66 (m, 1H), 4.36 (s, 1H), 4.13 (s, 3H), 3.94 (s, 3H), 3.39 (s, 3H), 2.32 (s, 3H), 1.39 (d, J=6.2 Hz, 6H). MS (ESI): mass calcd. for C22H25ClN6O3, 456.2. m/z found, 457.2 [M+H]+ and the second eluting enantiomer was Example 80c: 1H NMR (400 MHz, CDCl3) delta ppm 8.06 (d, J=2.2 Hz, 1H), 7.80 (d, J=8.7 Hz, 1H), 7.35-7.32 (m, 1H), 7.21 (s, 1H), 6.24 (s, 1H), 4.74-4.67 (m, 1H), 4.13 (s, 3H), 3.95 (s, 3H), 3.52 (s, 1H), 3.42 (s, 3H), 2.37 (s, 3H), 1.39 (d, J=6.2 Hz, 6H). MS (ESI): mass calcd. for C22H25ClN6O3, 456.2. m/z found, 457.2 [M+H]+.

The synthetic route of 16681-65-5 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; JOHNSON & JOHNSON; LEONARD, KRISTI A.; BARBAY, KENT; EDWARDS, JAMES P.; KREUTTER, KEVIN D.; KUMMER, DAVID A.; MAHAROOF, UMAR; NISHIMURA, RACHEL; URBANSKI, MAUD; VENKATESAN, HARIHARAN; WANG, AIHUA; WOLIN, RONALD L.; WOODS, CRAIG R.; FOURIE, ANNE; XUE, XIAOHUA; CUMMINGS, MAXWELL D.; MCCLURE, KELLY; TANIS, VIRGINIA; US2015/111870; (2015); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Discovery of 16681-65-5

At the same time, in my other blogs, there are other synthetic methods of this type of compound, 1-Methyl-1H-1,2,3-triazole, and friends who are interested can also refer to it.

Reference of 16681-65-5, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 16681-65-5 name is 1-Methyl-1H-1,2,3-triazole, This compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.

A solution of n-butyllithium in hexanes (2.5 M, 22.5 mL, 56.3 mmol) was added dropwise by syringe to a stirring solution of 1-methyl-1H-1,2,3-triazole (5.00 g, 60.2 mmol, prepared according to PCT Int. Appl., 2008098104) in dry tetrahydrofuran (400 mL) at -55 C. The resulting off-white slurry was stirred at -45 C. for 20 minutes, whereupon a solution of 2,6-dimethyl-pyridine-3-carbaldehyde (8.33 g, 61.7 mmol) in dry tetrahydrofuran (10 mL) was added dropwise by syringe. After 5 minutes, the cooling bath was removed and the reaction mixture was allowed to slowly warm. After 45 minutes, saturated aqueous ammonium chloride solution (10 mL) and ethyl acetate (100 mL) were added. The mixture was concentrated by rotary evaporation. The residue was dissolved in ethyl acetate (300 mL). The organic solution was washed with saturated aqueous sodium chloride solution (100 mL, containing excess solid sodium chloride). The aqueous layer was extracted with ethyl acetate (2*100 mL). The organic layers were combined and the combined solution was concentrated. Ether (100 mL) was added to the residue and the mixture was sonicated for 20 minutes during which time a white solid crashed out. The solids were collected by filtration. Ether (100 mL) was added to the collected solids and the mixture sonicated a second time. After 20 minutes, the mixture was filtered and the solids were collected to provide the title compound as a fine powder.

At the same time, in my other blogs, there are other synthetic methods of this type of compound, 1-Methyl-1H-1,2,3-triazole, and friends who are interested can also refer to it.

Reference:
Patent; JOHNSON & JOHNSON; LEONARD, KRISTI A.; BARBAY, KENT; EDWARDS, JAMES P.; KREUTTER, KEVIN D.; KUMMER, DAVID A.; MAHAROOF, UMAR; NISHIMURA, RACHEL; URBANSKI, MAUD; VENKATESAN, HARIHARAN; WANG, AIHUA; WOLIN, RONALD L.; WOODS, CRAIG R.; FOURIE, ANNE; XUE, XIAOHUA; CUMMINGS, MAXWELL D.; MCCLURE, KELLY; TANIS, VIRGINIA; US2015/111870; (2015); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Extended knowledge of 16681-65-5

The synthetic route of 16681-65-5 has been constantly updated, and we look forward to future research findings.

16681-65-5, name is 1-Methyl-1H-1,2,3-triazole, belongs to Triazoles compound, is considered to be a conventional heterocyclic compound, which is widely used in drug synthesis. The chemical synthesis route is as follows. Recommanded Product: 16681-65-5

To a flask containing 1-methyl-1H-1,2,3-triazole (125 mg, 1.5 mmol) was added THF (10 mL) and the colorless solution was cooled to -45 C. Then, n-BuLi (2.5 M in hexanes, 0.6 mL, 1.5 mmol) was added affording a suspension. The suspension was stirred between -40 C. and -10 C. for 30 minutes, then a THF solution of (2,4-dichloro-3-phenylquinolin-6-yl)(1,2-dimethyl-1H-imidazol-5-yl)methanone (500 mg, 1.26 mmol, Intermediate 18: step b, in 5 mL THF) was introduced and the mixture was allowed to warm up to room temperature. After 1 hour, the reaction mixture was heated to 40 C. for 3 hours and then quenched with aqueous NH4Cl solution. The aqueous portion was extracted with EtOAc (3*50 mL) and then with DCM (3*50 mL). The individual organic portions were washed with brine, dried over MgSO4, filtered, combined and concentrated to dryness. Chromatography on silica gel (5% MeOH-DCM increasing to 10% MeOH) provided material which was re-purified by preparative TLC (5% 2 M-NH3-MeOH-EtOAc) to provide the title compound as light tan solid. 1H NMR (500 MHz, CDCl3) delta 8.45-8.36 (m, 1H), 7.94 (d, J=8.8 Hz, 1H), 7.66-7.46 (m, 4H), 7.46-7.30 (m, 2H), 7.01 (s, 1H), 5.94 (s, 1H), 3.91 (s, 3H), 3.34 (s, 3H), 2.17 (s, 3H). MS (ESI): mass calcd. for C24H20Cl2N6O, 478.1, m/z found 479.1 [M+H]+.

The synthetic route of 16681-65-5 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; Janssen Pharmaceutica NV; Leonard, Kristi A.; Barbay, Kent; Edwards, James P.; Kreutter, Kevin D.; Kummer, David A.; Maharoof, Umar; Nishimura, Rachel; Urbanski, Maud; Venkatesan, Hariharan; Wang, Aihua; Wolin, Ronald L.; Woods, Craig R.; Fourie, Anne; Xue, Xiaohua; Cummings, Maxwell D.; US2015/105404; (2015); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Some tips on 16681-65-5

The synthetic route of 16681-65-5 has been constantly updated, and we look forward to future research findings.

Related Products of 16681-65-5, These common heterocyclic compound, 16681-65-5, name is 1-Methyl-1H-1,2,3-triazole, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

To a 2-necked flask containing 1 -methyl-1 H-[1 ,2,3]triazole (162.91 mg; 1.96 mmol; 1.05 eq.) is added anhydrous THF (4.00 ml_) and the solution is cooled between -40 to -20C. To this colorless solution n-BuLi in hexane 1 .6M (1 .23 ml; 1 .96 mmol; 1 .05 eq.) is added dropwise. After stirring at 0C for 1 hour, a solution of pyridine-3-carbaldehyde (175.28 L; 1.87 mmol; 1 .00 eq.) in anhydrous THF (3.00 mL) is added and the reaction mixture is stirred for 3 h. After this time, RM is quenched by pouring into a saturated solution of NH4CI. Aqueous phase is extracted 3 times with n-BuOH. Organic layer is dried over Na2S04, filtered and concentrated in vacuo to obtain: (3-methyl- 3H-[1 ,2,3]triazol-4-yl)-pyridin-3-yl-methanol (243.00 mg; yield 66 %; 99 % by UPLC) is obtained as a beige oil.

The synthetic route of 16681-65-5 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; SELVITA S.A.; FABRITIUS, Charles-Henry Robert Yves; NOWAK, Mateusz Oktawian; WIKLIK, Katarzyna Anna; SABINIARZ, Aleksandra Barbara; BIE?, Marcin Dominik; BUDA, Anna Ma?gorzata; GUZIK, Pawel Szczepan; JAKUBIEC, Krzysztof Roman; MACIUSZEK, Monika; KWIECI?SKA, Katarzyna; TOMCZYK, Mateusz Micha?; GA??ZOWSKI, Micha? Miko?aj; GONDELA, Andrzej; DUDEK, ?ukasz Piotr; (681 pag.)WO2016/180536; (2016); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics