The reaction rate of a catalyzed reaction is faster than the reaction rate of the uncatalyzed reaction at the same temperature. 556-48-9, Name is Cyclohexane-1,4-diol, SMILES is OC1CCC(O)CC1, in an article , author is Ouakki, M., once mentioned of 556-48-9, Quality Control of Cyclohexane-1,4-diol.
Insights into corrosion inhibition mechanism of mild steel in 1 M HCl solution by quinoxaline derivatives: electrochemical, SEM/EDAX, UV-visible, FT-IR and theoretical approaches
Three quinoxaline-based heterocycles namely, 6-methyl-2,3-diphenyl-quinoxaline (Q-CH3), 6-nitro-2,3-diphenylquinoxaline (Q-NO2) and 2,3-diphenylquinoxaline (Q-H) were evaluated as inhibitor for mild steel (MS) in 1 M HCl. Inhibition effectiveness of the Q-H, Q-CH3 and Q-NO2 tested using different computational simulations and experimental methods. Results showed that inhibition effectiveness of Q-H, Q-CH3 and Q-NO2 increases with their concentration. Polarization results showed that Q-H, Q-CH3 and Q-NO2 displayed anodic-type behaviour. Inhibition efficiencies of Q-H, Q-CH3 and Q-NO2 followed the order: 87.6% (Q-NO2) < 90.2% (Q-CH3)< 92.4% (Q-H) for Q-CH3. Presence of both electron withdrawing (-NO2) and donating (-CH3) substituents decrease the inhibition efficiency as compared to the parent compound however in decrease in protection power is more prominent in the presence of -NO2 substituent. Q-H, Q-CH3 and Q-NO2 inhibit corrosion by adsorbing on MS surface and their adsorption mode followed Langmuir adsorption isotherm. Adsorption of Q-H, Q-CH3 and Q-NO2 on metallic surface reinforced with SEM-EDS and UV-visible studies of MS surfaces. Interaction mechanism of QH, Q-CH3 and Q-NO(2 )with MS surface and their mode of adsorption was studies using DFT and MD (MD) simulations, respectively. Negative sign of adsorption energies (E-ads) for Q-H, Q-CH3 and Q-NO2 suggested that they adsorb spontaneously over MS surface. Interested yet? Read on for other articles about 556-48-9, you can contact me at any time and look forward to more communication. Quality Control of Cyclohexane-1,4-diol.